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1 Introduction 

1.1 About This User Guide 

This user guide describes the Symmetric Communication Interface (SCIF) for the Intel® 
Xeon Phi™ Product Family. SCIF is a component of the Intel® ManyCore Platform 
Software Stack (MPSS). The goal of this document is to present SCIF concepts and 

usage. Refer to the SCIF header file, scif.h, and the SCIF man pages for detailed 
information on the SCIF API. 

1.2 Target Audience 

The target audience includes tools developers and application developers.  After reading 

this document, the reader will be able to use the SCIF interface for communication 
between the components of a distributed application. 

1.3 Related Documents 

Document Title Revision Number Availability 

MPI overview and 

specification 
 http://www.mpi-forum.org/ 

OFED* overview  
http://www.openfabrics.org/OFED-
Overview.html 

1.4 Terminology and Acronyms 

Term Description 

API Application Programming Interface 

HCA (Infiniband) Host Channel Adapter 

MIC Intel® Many Integrated Core 

MPSS ManyCore Platform Software Stack 

OFED Open Fabrics Enterprise Distribution 

RMA Remote memory access 

RDMA Remote direct memory access 

 

http://www.mpi-forum.org/
http://www.openfabrics.org/OFED-Overview.html
http://www.openfabrics.org/OFED-Overview.html
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2 Product Overview 

2.1 Goals and Objectives 

SCIF provides a mechanism for inter-node communication within a single platform, 
where a node is an Intel® Xeon Phi™ coprocessor or an Intel® Xeon® host processor 
complex.  In particular, SCIF abstracts the details of communicating over the PCIe bus 

while providing an API that is symmetric between the host and MIC Architecture 
devices.  An important design objective for SCIF was to deliver the maximum possible 

performance given the communication capabilities of the hardware.  

2.1.1 Portability and Platform Independence 

The Intel® MIC software architecture supports a computing model in which the 

workload may be distributed across both the Intel® Xeon® host processor complex and 
Intel® MIC Architecture coprocessors.  An important property of SCIF is symmetry; 
SCIF drivers must present the same interface on both the host processor and the Intel® 
MIC Architecture coprocessor in order that software written to SCIF can be executed 
wherever is most appropriate. 

Since the Intel® MIC Architecture coprocessor may use a different operating system 

than that running on the host, the SCIF architecture is designed to be operating system 
independent.  This ensures SCIF implementations on different operating systems can 
inter-communicate. 

2.2 Product Environment 

As mentioned earlier, the Intel® MIC software architecture supports a computing model 
in which the workload is distributed across both Intel® host processors and Intel® MIC 
Architecture coprocessors.  

2.2.1 Hardware Environment 

SCIF supports communication between Xeon host processors and Intel® MIC 

Architecture coprocessors within a single platform. Communication between such 
components that are in separate platforms can be performed using standard 
communication channels such as Infiniband and TCP/IP. 

2.2.2 Software Environment 

A SCIF implementation on a host or Intel® MIC Architecture coprocessor includes both a 

user mode (Ring 3) library and kernel mode (Ring 0) driver as shown in Chapter 3 SCIF 
Programming Concepts .Most of the components in the Intel® MPSS use SCIF for 
communication. Refer to the Intel® Xeon Phi™ coprocessor (codename: Knights Corner) 
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Software Developers Guide for a discussion of the other components in the Intel® MPSS 
and their relationship to SCIF. 

Figure 1: Intel® ManyCore Platform Software Stack (MPSS) 
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3 SCIF Programming Concepts 

The SCIF driver provides a reliable connection-based messaging layer, as well as 
functionality which abstracts RMA operations. In the following sections we describe 
these architectural concepts in some detail. The SCIF API is documented in the SCIF 
header file, scif.h, and the SCIF man pages. A common API is exposed for use in both 
user mode (ring 3) and kernel mode (ring 0), with the exception of slight differences in 

signature, and several functions which are only available in user mode, and several only 
available in kernel mode. 

3.1 Nodes 

A SCIF node is a physical endpoint in the SCIF network. The host and MIC Architecture 

devices are SCIF nodes. From the SCIF point of view, all host processors (CPUs) under a 
single OS are considered a single SCIF (host) node. 

We generally use node instead of SCIF node where this will not cause confusion. 

Each node in the SCIF network has a node identifier that is assigned when the platform 

is booted. Node IDs are generally based on PCIe discovery order and, thus, may change 
across a platform reboot, however the host node is always assigned ID 0. 

3.2 Ports 

A SCIF port is a logical destination on a SCIF node. We generally use port rather than 
SCIF port. Within a node, a SCIF port on that node may be referred to by its number, a 
16-bit integer. This is analogous to an IP port; for instance, SSH usually talks over TCP 
port 22. We sometimes use local port to refer to a port that is on the same node as a 

particular point of reference.  

A SCIF port identifier is unique across a SCIF network, comprising both a node identifier 
and a local port number. A SCIF port identifier is analogous to a complete TCP/IP 
address (for instance 192.168.1.240:22). 

Analogous to Internet sockets, some ports may be well-known, and monitored by 

service daemons launched with the local OS or later. Any such services are layered on 
SCIF and thus beyond the scope of this document. 

3.3 Endpoints and Connections 

The entity through which a port is accessed is called an endpoint. An endpoint can be 
listening, for example waiting for a connection request from another endpoint, or 
connected, for example able to communicate with a remote connected endpoint. A 
connection is an association established between two endpoints for the purpose of 

communication. The following functions are used during the connection process: 
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 scif_epd_t scif_open(void); 

 int scif_bind(scif_epd_t epd, uint16_t pn); 

 int scif_listen(scif_epd_t epd, int backlog); 

 int scif_connect(scif_epd_t epd, struct scif_portID* dst); 

int scif_accept (scif_epd_t epd, struct scif_portID* peer, 

scif_epd_t*   

newepd, int flags); 

 int scif_close (scif_epd_t epd); 

The process for establishing a connection is similar to socket programming: A process 

calls scif_open() to create a new endpoint; scif_open() returns an endpoint 

descriptor that is used to refer to the endpoint in subsequent SCIF function calls.  The 

endpoint is then bound to a port on the local node using scif_bind().  An endpoint 

which was opened and bound to a port is made a listening endpoint by calling 

scif_listen(). To create a connection, a process opens an endpoint and binds it to a  

local port, and then requests a connection by calling scif_connect(), specifying the 

port identifier of some listening endpoint, usually on a remote node. A process on the 

remote node may accept a pending or subsequent connection request by calling 

scif_accept(). scif_accept() can conditionally return immediately if there is no 

connection request pending, or block until a connection request is received. 

The select() and poll() functions can be used from Linux* user mode to determine 

when a connection request is received on any of a set of listening endpoints. The 

scif_poll() function may be used from Linux* user and kernel modes, and from 

Microsoft Windows* user mode for this purpose. 

When the connection request is accepted, a new connected endpoint is created, bound 
to the same port as the listening endpoint. The requesting endpoint and the new 

endpoint are now connected endpoints that form the connection. The listening endpoint 
is unchanged by this process. Multiple connections may be established to a port bound 
to a listening endpoint. 

The following figure illustrates the connection process. In this example, a process on 

node i calls scif_open(), which returns endpoint descriptor epdi. It then calls 

scif_bind() to bind the new endpoint to local port pm, and then calls 

scif_connect() requesting a connection to port pn on node j. Meanwhile, a process 

on node j calls scif_open(), getting back endpoint descriptor epdj, binds the new 

endpoint associated with epdj to local port pn, and calls scif_listen() to mark the 

endpoint as a listening endpoint. Finally, it calls scif_accept() to accept a 

connection request. In servicing the connection request, scif_accept() creates a 

new endpoint, with endpoint descriptor nepd, which is the endpoint to which epdi is 

connected. The endpoints associated with epdi and nepd are now connected 

endpoints and may proceed to communicate with each other. The listening endpoint 

associated with epdj remains a listening endpoint and may accept an arbitrary number 

of connection requests.  
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Figure 2: Connecting two endpoints 
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Normally the endpoints of a connection are on different nodes in the SCIF network. We 

therefore often refer to these endpoints as local and remote with respect to one end of 
the connection. In fact, SCIF fully supports connections in which both endpoints are on 
the same node, and we refer to this as a loopback connection. 

A process may create an arbitrary number of connections, limited by system resources 
(memory). The following figure illustrates a SCIF network of three nodes. Two 

connections have been established between nodes 0 and 1, another between nodes 0 
and 2. On node N2, a loopback connection was established. 
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Figure 3: Connected endpoints 
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The endpoint pair comprising the connection are peer endpoints or just peers. Similarly, 
the processes which own the peer endpoints are peer processes, the node on which a 
peer endpoint resides is a peer node, and so on.  

3.4 Messaging Layer 

After a connection is established, messages may be exchanged between the processes 
owning the connected endpoints. A message sent into one connected endpoint is 
received at the other connected endpoint. Such communication is bi-directional. The 

following functions comprise the messaging layer: 

 

int scif_send(scif_epd_t epd,void* msg,int len,int flags); 

int scif_recv(scif_epd_t epd,void* msg,int len,int flags); 

Messages are always sent through a local endpoint for delivery at a remote connected 

endpoint. For each connected pair of endpoints, there is a dedicated pair of message 
queues –one queue for each direction of communication. In this way, the forward 
progress of any connection is not gated by progress on another connection, which might 
be the case were multiple connections sharing a queue pair. 

A message may be up to 231-1 bytes long. In spite of this, the messaging layer is 

intended for sending short command-type messages, not for bulk data transfers. The 
messaging layer queues are relatively short; a long message is transmitted as multiple 
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shorter queue-length transfers, with an interrupt exchange for each such transfer. 
Therefore it is strongly recommended that SCIF RMA functionality be used for sending 
larger units of data, for instance longer than 4KiB. 

Messages on any connection are received in the order in which they are sent. There are 
no guarantees regarding the order in which messages sent on different connections are 

received. Moreover, the PCIe bus is assumed to be a reliable transport. Therefore, SCIF 
makes no attempt to detect or correct lost or corrupted messages.  

The content of a message is not interpreted by the messaging layer, and has meaning 
only to the sending and receiving processes. Therefore it is the responsibility of the 

application to impose any required structure or protocol. 

The messaging layer supports both blocking and non-blocking behaviors. A blocking call 

to the scif_send() function will block (not return) until the entire message is sent. A 

non-blocking call to the scif_send() function only sends as much data as there is 

room in the send queue at the time of the call. In both cases, the number of bytes sent 

is returned as the result of the call. The select() and poll() functions can be used 

from Linux* user mode to determine when it is possible to send more data on any of a 

set of connected endpoints. The scif_poll() function may be used from Microsoft 

Windows* and Linux* kernel mode, and from Microsoft Windows* user mode for this 

purpose. 

Similarly, a blocking call to the scif_recv() function will block until all len bytes 

(where len is a parameter specifying the number of bytes to receive) have been 

received and copied to the application’s buffer. A non-blocking call to the scif_recv() 

function only returns data that is currently in the receive queue (up to some application-
specified maximum number of bytes). In both cases, the number of bytes received is 

returned as the result of the call. The select() and poll() functions can be used 

from Linux* user mode to determine when more data is available on any of a set of 

connected endpoints. The scif_poll() function may be used from Microsoft 

Windows* and Linux* kernel modes, and from Microsoft Windows* user mode for this 

purpose. 

3.5 Memory Registration 

Memory registration is the mechanism by which a process exposes ranges of its address 

space for controlled access by another process, typically a process on a remote node. 
Memory must be registered before it can be mapped to the address space of another 
process or be the source or target of an RMA transfer.  

Each connected endpoint has a registered address space, a kind of address space 

managed by the SCIF driver, ranges of which can represent local physical memory. The 
registered address space is sparse in that only specific ranges which have been 

registered, called registered windows or just windows, can be accessed. It is an 
application error to attempt to access any range of a registered address space which is 
not within such a window. 

We use the term offset to mean a location in a registered address space in analogy to 

the mapping from virtual address space to a shared memory object established by the 

Posix mmap() function. In the Posix mmap() function, an offset parameter specifies the 

offset, from the beginning of the memory object, of the range onto which the virtual 
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address range is mapped. Essentially an offset is an address in some registered address 
space, therefore we sometimes talk about a registered address. 

The following functions support registration: 

 

off_t scif_register(scif_epd_t epd, void* addr, size_t len, 

off_t  

      offset, int prot_flags, int map_flags); 

int scif_unregister(scif_epd_t epd, off_t offset, size_t 

len); 

The scif_unregister() function and window deletion is discussed in a later section. 

[In this and subsequent sections, we talk about ranges in virtual and registered address 
spaces. The reader should understand that these are specified by the (addr,len) and 
(offset,len) parameter pairs respectively. Registration granularity is 4KiB (a small page) 

so the addr, offset and len parameters to scif_register() must be multiples 

of 4KiB.] 

The scif_register() function establishes a mapping between a range in the 

registered address space of some connected endpoint of the calling process and a set of 

physical pages. The physical pages are indirectly identified by specifying a range in the 
user virtual address space of the calling process. The mapping, then, is from the 
specified range in some registered address space to the physical pages which back the 
specified virtual address range. This mapping between registered address space and 
physical memory remains even if the specified virtual address range is unmapped or 
remapped to some different physical pages or object.  

In the following figure, the left diagram illustrates a registered window, W, at the time 

of its creation by scif_register(). The pages of W, a range in the registered 

address space of some local endpoint, represent some set, P1, of physical pages in local 
memory. P1 is the set of physical pages which backed a specified virtual address range, 

VA, at the time that scif_register() was executed.  Even if the virtual address 

range, VA, is subsequently mapped to different physical pages P2, W continues to 
represent P1. Of course, the process now has no way to access the registered memory 
in order to read or write RMA data unless those physical pages back some other virtual 
address range. 

For simplicity, we show P1 and P2 as contiguous ranges in physical memory, whereas 
they may be discontiguous. 
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Figure 4: Registration mapping to memory objects 
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Though a window is a mapping in the mathematical sense, we generally say that the 

registered address space range of a window represents the corresponding physical 

pages. This is intended to avoid confusion with mappings created by scif_mmap() or 

mmap()) described later. 

The physical pages which a window represents are pinned (locked) in memory so that 
they can be accessed from a remote SCIF node. Therefore it is an error to specify a 

virtual address range to scif_register() for which the backing pages cannot be 

pinned for whatever reason. The pages which a window represents remain pinned as 
long as the window exists. As will be explained below, a physical page may be 
represented by more than one window. Such a page will remain locked until all such 

windows are unregistered.  

The scif_unregister() function is used to delete one or more windows and is 

discussed in more detail later. 

Figure 5: Registered window configurations 
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This figure illustrates several registered window configurations. It shows the physical 

space of a node which has two connected endpoints, possibly owned by different 
processes. Each endpoint has an independent registered address space associated with 
it (for simplicity, we do not illustrate the virtual memory ranges which the physical 
ranges back). 

 Windows W1a and W2a represent the same physical address range but have 

different offsets in their respective registered address spaces. 

 W1b and W2b have the same offset (the light gray dashed lines help show this) but 
represent different physical address ranges.  

 W1c and W1d are disjoint windows in the same registered address space, but 
represent overlapping physical address ranges. 

The extra degree of freedom offered by registered address spaces may be useful for 

solving various communication and programming problems. 
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We refer to a window in the registered address space of the peer of a local endpoint as a 
remote window. Every window in the registered address space of a local endpoint is a 

remote window to the peer endpoint. Several SCIF functions (scif_readfrom(), 

scif_writeto(), scif_vreadfrom(), scif_vwriteto(), scif_mmap(), and 

scif_get_pages()) access remote windows or portions thereof, and specified as an 

offset and length in the registered address space of the peer of a specified local 
endpoint.  

The management of a registered address space can be performed by SCIF, by the 

application or both, and is controlled by the map flags parameter to scif_register(). 

When SCIF_MAP_FIXED is set in map_flags, SCIF attempts to allocate the window at the 

registered address specified in the offset parameter. Otherwise, SCIF selects a 
registered address at which to allocate the window.  

In Figure 6 the application has create three windows at offsets 0x1000, 0x3000 and 
0x5000 respectively (by passing the SCIF_MAP_FIXED flag), each 0x1000 bytes long. If 

these offsets are coded in the peer application, then it knows the offsets to use to 
access these windows, for example in performing an RMA.  

Physical Address  
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Local Registered  
Address Space  1 

Local Registered  
Address Space  2 

Pa Pb Pc Pd 

W 1 a W 1 b W 1 c W 1 d 

W 2 a W 2 b 
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Figure 6: Hard coded registered addresses 
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As an alternative, an application can use the virtual address as the offset when 
registering a window. In this way the application need not “remember” the offset of the 
window corresponding to some virtual address. This is illustrated in Figure 7. 



 

 19  
  

Figure 7: Registered addresses same as virtual addresses 
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The scif_register() function also takes a prot_flags parameter which controls 

access to the window being registered. The SCIF_PROT_READ flag marks a window as 
allowing read operations; specifically the window can be the source of an RMA 
operation. Similarly the SCIF_PROT_WRITE flag marks a window as allowing write 

operations; specifically the window can be the destination of an RMA operation.  

The scif_mmap() function (described more fully later) also takes a prot_flags 

parameter.  The SCIF_PROT_READ flag indicates that the mapped region is to be 
readable; it is an error if the referenced window was not also registered with the 
SCIF_PROT_READ flag. Similarly the SCIF_PROT_WRITE flag indicates that the mapped 
region is to be writable; it is an error if the referenced window was not also registered 
with the SCIF_PROT_WRITE flag.  

These flags only control access to windows; they do not control access to the physical 
pages which a window represents where those pages back virtual memory. Thus, 
referring back to Figure 7, the process which registered window W has access to the 
pages P1 through the virtual addresses VA regardless of the protections on window W. 
Similarly, once a (portion of a) window is mapped using scif_mmap(), the application 

may read or write to the mapped physical pages regardless  of the prot_flags 

specified when scif_mmap() was called. Referring ahead to, the process which mapped a 

range, RR, of remote window RW into a range of its address space at VA, can both read 

and write to pages P through VA, regardless of the value of prot_flags. 

3.5.1 Duplication of Endpoint Descriptors Across a fork() 

On Linux*, an endpoint is implemented as a file description, and an endpoint descriptor 
as a file descriptor. If an application opens an endpoint and then fork()’s, the parent and 
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child will each have an endpoint descriptor (file descriptor) which refers the same 
endpoint. The parent and child then share the registered address space of this endpoint. 
Consider the following scenario: 

 

Parent: 

scif_epd_t epd = scif_open(); 

scif_connect(epd, pn); 

fork(); 

off_t po = 

scif_register(epd,addr1,0x1000, 

   0x10000,3,0); 

scif_readfrom(epd,0x20000,len1, 

   roff1,flags); 

 

Child: 

 

 

 

off_t po =  

scif_register(epd,addr2,0x1000, 

   0x20000,3,0); 

scif_readfrom(epd,0x10000,len2, 

   roff2,flags);

After the fork(), both the parent and child have an endpoint descriptor, epd, which 

refers to the endpoint created by the parent. The parent now registers a window at 
offset 0x10000 that represents the physical page backing the page at its addr1. 
Similarly the child registers a window at offset 0x20000 that represents the physical 
page backing the page at its addr2. Because both windows are in the same registered 

address space, the child can access the parent’s memory and vice versa. That is, any 
memory registered to this endpoint is shared by the two processes. For example, each 
can initiate an RMA which transfers data into the shared pages. This behavior, while 
perhaps surprising, is consistent with fork() semantics regarding duplication of file 
descriptors. 

3.5.1.1 Registered Memory Across a fork() 

Linux*’ copy-on-write semantics mean that, following a fork(), both the parent and child 
process will have page table entries pointing to the same physical pages. Because those 
pages are write protected, when one of the processes, either parent or child, writes to a 
page, the hardware will trap the write event. The kernel will respond by allocating a new 

page and copying the contents from the original page, breaking the linkage to the 
physical page for that process. 

Consider the case that a process registers a window and then fork()’s. Suppose the 
parent now writes directly to a virtual address corresponding to a page of the window; it 
will be allocated a new physical page. However, subsequent RMAs to or from the window 

offset that corresponds to that virtual address will, however, access the original physical 
page at the time of registration, not the newly allocated physical page; the physical 
pages that the window represents are unchanged.  Thus, data which the parent process 

writes to the newly allocated page will not be sent when a scif_writeto() RMA is 

performed, and data received when a scif_readfrom() RMA is performed will not be 

read by the process. 

To prevent this from happening, it is recommended that the parent mark the virtual 
address range of a registered window as MADV_DONTFORK, if the process will fork() 

after performing the registration. Doing this prevents the virtual address range from 
being seen by the child, so it is only seen by the parent, and copy-on-write semantics 
do not apply to that range. 

A similar problem can occur if a process registers a window after a fork() in which the 
virtual address range was allocated before the fork(), since that virtual address range 
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might now be subject to copy-on-write semantics. There are several possible solutions 
to this problem: 

 Mark the virtual address range to be registered as MADV_DONTFORK before the 
fork(). The virtual address range will now only be available for registration by 
the parent. 

 (After the fork…) In one or the other process, write to all the pages of the range 
to force new pages to be allocated 

3.5.2 Kernel Mode Registration-Related API 

Several additional functions are available in kernel mode to solve specific programming 
requirements: 

 

int scif_pin_pages(void* addr, size_t len, int prot_flags, 

int  

    map_flags, scif_pinned_pages_t* pages); 

int scif_unpin_pages(scif_pinned_pages_t pinned_pages); 

off_t scif_register_pinned_pages(scif_epd_t epd, 

scif_pinned_pages_t  

    pinned_pages, off_t offset, int map_flags); 

scif_pin_pages() pins the set of physical pages which back a range of virtual 

address space, and returns a handle which may subsequently be used in calls to 

scif_register_pinned_pages() to create windows which represent the set of 

pinned pages. The windows so created are otherwise identical to windows created by 

scif_register(). The handle is freed by scif_unpin_pages(), but the physical 

pages themselves remain pinned as long as there is a window which represents the 

pages. Unlike scif_register() which interprets the address passed it as a user 

space address, scif_pin_pages() interprets the address passed it as a kernel space 

address if the map_flags parameter has the SCIF_MAP_KERNEL flag. 

Figure 8 illustrates this process. In the leftmost panel, scif_pin_pages() pins the 

set of physical pages, P1, which back some range, VA, of virtual address space. In the 
center panel, a window, W1, is registered, using 

scif_register_pinned_pages(), at some offset in some Registered Address 

Space 1, and represents the physical pages P1. In the rightmost panel, a second 

window, W2, is registered, again using scif_register_pinned_pages(), at some 

offset in some Registered Address Space 2, and also represents the physical pages P1. 

At the same time, the mapping of VA was changed to the set of physical pages, P2, but 
windows W1 and W2 continue to represent P1.  
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Figure 8: Registering windows using scif_pin_pages() 
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3.6 Mapped Remote Memory 

The SCIF mapping functions enable mapping some physical memory on a remote node 

into the virtual address space of a process. Once established, a read or write access to 

such a mapped range of virtual address space will read or write to the corresponding 
mapped physical memory location. The mapping functions are: 

void* scif_mmap(void* addr, size_t len, int prot_flags, int 

map_flags,  

scif_epd_t epd, off_t offset); 

int scif_munmap (void* addr, size_t len); 

Note: These functions are only available in the user mode API. 

The mapping esta 

 

blished by a scif_mmap() operation is illustrated in the following figure: 
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Figure 9: Address space mapping of scif_mmap() 
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The process performing the scif_mmap() operation specifies a range, VA, within its 

local virtual address space, and a corresponding range, RR, of the same length within a 

peer remote registered address space. The composition of the mapping from VA to RR 
and the mapping from RR to P, the set of physical pages represented by RR, defines a 

mapping (black lines) from VA to P. scif_mmap() modifies the page table of the 

process according to this mapping. Hence, reads from and writes to VA will actually read 
from or write to corresponding locations in the physical pages P.  
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Figure 10:  Virtual address space mapping that intersects multiple windows 
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The remote registered address range may not intersect any portion of the remote virtual 

address space which is not within a window, but may intersect multiple remote 
windows. Therefore those multiple windows must be contiguous in their registered 
address space.  In Figure 10, RR intersects windows RW1 and RW2, which represent 
physical memory ranges P1 and P2 respectively. Thus access to an address in VA will be 
vectored to a page in P1 or P2 depending on whether the address in VA maps to RW1 or 

RW2. 

While a remote mapping exists, the remote pages remain pinned and available for 

access, even if the peer endpoint referenced when the mapping was created is closed, 

either explicitly or because the peer process is killed. scif_munmap() unmaps some 

range of pages in the callers address space. Subsequent access to such virtual pages 

results in a segmentation fault. scif_munmap() does not take an endpoint parameter; 

if a page in the specified range was not mapped using scif_mmap(), the effect will be 

as if mmap() was called on that page. 

3.6.1 Kernel Mode Mapping-Related API 

The kernel mode API provides a similar capability to scif_mmap() through the 

scif_get_pages() and scif_put_pages() functions. scif_get_pages() takes 

a range in some remote window and returns a structure listing the physical addresses of 
pages which are represented by the registered address space range. Those physical 
pages will continue to be available until the structure obtained from 

scif_get_pages() is returned in a call to scif_put_pages(). 

3.7 Remote Memory Access 

SCIF RMA operations are intended to support the one-sided communication model which 

has the advantage that a read/write operation can be performed by one side of a 
connection when it knows both the local and remote locations of data to be transferred. 
One-sided calls can often be useful for algorithms in which synchronization would be 
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inconvenient (for instance distributed matrix multiplication), or where it is desirable for 
tasks to be able to balance their load while other processors are operating on data.  

The following functions comprise the RMA group: 

 

int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len, 

off_t  

    roffset, int rma_flags); 

int scif_writeto(scif_epd_t epd, off_t loffset, size_t len, 

off_t  

    roffset, int rma_flags); 

int scif_vreadfrom(scif_epd_t epd, void* addr, size_t len, 

off_t  

    offset, int rma_flags); 

int scif_vwriteto(scif_epd_t epd, void* addr, size_t len, 

off_t  

    offset, int rma_flags); 

The scif_readfrom() and scif_writeto() functions perform DMA or CPU based 

read and write operations, respectively, between physical memory of the local and 

remote nodes of the specified endpoint and its peer. The physical memory is that which 
is represented by specified ranges in the local and remote registered address spaces of 
a local endpoint and its peer remote endpoint. Specifying these registered address 
ranges establishes a correspondence between local and remote physical pages for the 

duration of the RMA operation. The rma_flags parameter controls whether the 

transfer is DMA or CPU based. 

Figure 11 illustrates such a mapping. The process performing the operation specifies a 

range, LR, within the registered address of one of its connected endpoints, and a 
corresponding range, RR, of the same length within the peer endpoint’s registered 
address space. Each specified range must be entirely within a previously registered 
window or contiguous windows of the corresponding registered address spaces. The 
solid green lines represent the correspondence between the specified ranges in the local 
and remote registered address spaces; the dashed green lines represent the projections 

into their respective physical address spaces.  This defines an overall effective 
correspondence (black lines) between the physical address space of the local node and 
that of the remote node of the peer registered address space. 

Hence, a DMA operation will transfer data between LP and RP (again, LP and RP are 
typically not contiguous).  

  



 

 26  
  

Figure 11: scif_readfrom()/scif_writeto()address space mapping 
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scif_vreadfrom() and scif_vwriteto() are variants of scif_readfrom() 

and scif_writeto(). Rather than taking a local registered address space range 

parameter, these functions take a local user address space range, V. Transfers are then 

between the local physical pages, LP, which back V, and the remote physical pages, RP 
which are represented by RR. The resulting address space mapping is illustrated in 
Figure 12. 

Figure 12: scif_vreadfrom()/scif_vwriteto()address space mapping 
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If it is known that a buffer will be used multiple times as the source or destination of an 

RMA, then it is typically beneficial to scif_register() the buffer and use 

scif_readfrom() and scif_writeto() to perform the transfers. However, if it’s 

known that the buffer will only be used once, or if it is unknown if the buffer will be used 
multiple times (this might be the case in a library on top of SCIF), then using 

scif_vreadfrom() and scif_vwriteto() may provide a performance advantage 

as compared to registering some window in the local registered address space, 

performing a single RMA operation to or from that window, and then unregistering the 
window.  

As mentioned, in some cases it is not known whether a local buffer will be used in 

subsequent transfers. For this case, the scif_vreadfrom() and scif_vwriteto() 

functions have a caching option. When the rma_flags parameter includes the 

SCIF_RMA_USECACHE flag, physical pages that were pinned in order to perform the 

RMA may remain pinned after the transfer completes. This may reduce overhead if 
some or all of the same virtual address range is referenced in a subsequent execution of 

scif_vreadfrom() or scif_vwriteto() since pinning pages has relatively high 

overhead. A cached page is evicted from the cache in the event that it no longer backs 

the user space page that it backed when first cached. 

3.7.1.1 DMA Ordering 

The Intel® Xeon Phi™ coprocessor DMA engine does not maintain write ordering. That 
is some written data may become visible before written data with a lower address. This 

might be an issue if the process to which data is being transferred polls the last byte of 
a buffer for some trigger value as an indication that the transfer has completed.  

When the rma_flags parameter includes the SCIF_RMA_ORDER flag, the last 

cacheline or partial cacheline of the transfer is written after the all other data in the 

transfer is written. There is slight performance penalty for invoking this feature.  

Similarly, the order in which any two RMA transfers complete is indeterminate. SCIF 

synchronization functions, described in the next section, can be used to synchronize to 
the completion of RMA transfers.  

3.8 RMA Synchronization 

SCIF supports the ability of a process to synchronize with the completion of RMA 
operations previously initiated against one of its endpoints, or against a peer of one of 
its endpoints. The following functions comprise the synchronization group: 

 

int scif_fence_mark(scif_epd_t epd, int flags, int* mark); 

int scif_fence_wait(scif_epd_t epd, int mark); 

int scif_fence_signal(scif_epd_t epd, off_t loff, uint64_t 

lval, off_t 

roff, uint64_t rval, int flags); 

There are two synchronization methods available. The first method uses both the 

scif_fence_mark() and  scif_fence_wait() functions. The 

scif_fence_mark() function marks the set of RMAs previously initiated against a 
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specified endpoint or against its peer, and which have not yet completed. 

scif_fence_mark() returns a handle to the application which the application can 

later pass to scif_fence_wait() in order to await completion of all RMAs in the 

marked set. If the flags parameter has the SCIF_FENCE_INIT_SELF flag, then 

scif_fence_mark() marks RMAs initiated through the local endpoint. If the flags 

parameter has the SCIF_FENCE_INIT_PEER flag, then scif_fence_mark() marks 

RMAs initiated through the peer endpoint. flags can have only one of these flags 

values. 

Figure 13: scif_fence_mark()/scif_fence_wait() 
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This is illustrated in Figure 13 (the triangles are meant to indicate RMA progress over 
time). RMA1 and RMA2 are initiated at times t1 and t2, respectively, against some 

endpoint descriptor epd. At time t3, scif_fence_mark() is called,  marking RMA1 

and RMA2 as members of some set, and returning a handle m to that set. At time t4, 

RMA3 is initiated. The application then calls scif_fence_wait() at time t5 to await 

the completion of RMAs in the set indicated by handle m. scif_fence_wait() then 

returns at time t6 when RMA1 completes. 

The second synchronization method uses the scif_fence_signal().  This function 

returns after conceptually marking the set of RMAs previously initiated against a 
specified endpoint or against its peer endpoint, and which have not yet completed. Like 

scif_fence_mark(), if the flags parameter has the SCIF_FENCE_INIT_SELF flag, 

then scif_fence_mark() marks RMAs initiated through the local endpoint. If the 

flags parameter has the SCIF_FENCE_INIT_PEER flag, then scif_fence_mark() 

marks RMAs initiated through the peer endpoint. flags can have only one of these 

flags values. 

When all the RMAs in the marked set have completed, an application specified value, 

lval,  is written to a specified offset, loff,  in the registered address space of a local 

endpoint and/or another application specified value, rval, is written to another 

specified offset, roff, in the registered address space of the peer of the local endpoint, 
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as specified by the SCIF_SIGNAL_LOCAL and SCIF_SIGNAL_REMOTE flag values. Each 
specified offset must be within a registered window of the corresponding registered 
address space.  

The local process and/or the peer process may poll the virtual address which maps to 
the specified registered address space offset waiting for the specified value(s) to be 

written. 

scif_fence_signal() is illustrated in Figure 14 in which the same sequence of 

RMAs is initiated. The application calls scif_fence_signal() at time t3, passing a 

local offset, loff, and a value, v to be written to loff. Then  

scif_fence_signal() returns after marking RMA1 and RMA2, that were previously 

initiated and have not completed. At time t6, when all RMAs in the marked set have 

completed, a value v is written to the registered address space at offset loff. (For 

simplicity, we don’t try to illustrate writing to values to both the local and remote 

registered address spaces.) 

Figure 14: scif_fence_signal() 
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Marking a set of RMAs does not impose a barrier. That is, an RMA that is submitted after 
a set of RMAs is marked can begin transferring, and even complete its transfer, before 

the marked set completes. This is the case for both synchronization methods. For 
example, in the figure above RMA3 is shown to access some of the same registered 
address range as RMA1 while RMA1 is in progress. Thus if RMA1 is a transfer to some 
memory and RMA3 is a transfer out of some of the same memory, RMA3 would likely 

not transfer out the expected data in this case. It is the application’s responsibility to 
order RMAs as needed by using SCIF synchronization functionality to await the 
completion of previous RMAs before subsequent RMAs are submitted. In this case, the 

application should wait until after RMA1 and RMA2 have completed by polling for v 
before initiating RMA3: 
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Figure 15: Using scif_fence_signal() 
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In the case that an application must wait for a DMA transfer to complete before it can do 
any other work, it can use either of the two fence mechanisms described above. 

Alternatively, if the rma_flags parameter of any RMA API includes the 

SCIF_RMA_SYNC flag, then control will not return to the application until the RMA has 
completed. 

3.9 Registered Window Deletion 

The scif_unregister() function is used to delete one or more registered windows, 

as specified by a local endpoint and a range within that endpoint’s registered address 
space. The range must completely encompass zero or more windows. Deleting a portion 
of a window is not supported. 

After scif_unregister() is called to delete a window, the registered address space 

range of the window is no longer available for use in calls to scif_mmap(), 

scif_get_pages(), scif_readfrom(), scif_writeto(), 

scif_vreadfrom(), scif_vwriteto() and scif_fence_signal(). However,  

the window continues to exist until all references to the window are removed. A window 

is referenced if there is a mapping to it created by scif_mmap(), or if 

scif_get_pages()  was called against the window (and the pages have not been 

returned via scif_put_pages()). A window is also referenced while an RMA, in which 

some range of the window is a source or destination, is in progress. Finally a window is 

referenced while some offset in that window was specified to scif_fence_signal(), 

and the RMAs marked by that call to scif_fence_signal() have not completed. 

Until the window is deleted, no portion of its registered address space range can be 
used to create a new window, and all the physical pages represented by that window 
remain locked.. A physical page can be represented by multiple windows; for example, 
see cases 1 and 3. Such a page remains locked until all the windows which represent it 
are deleted. 
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3.9.1 Connection Termination 

We distinguish between normal connection termination that is triggered by one of the 
processes at each end of a connection, and abnormal termination triggered when a node 
becomes “lost”. 

3.9.2 Normal Connection Termination 

A connection is terminated when scif_close() is called on one of its endpoints. The 

following steps describe the process of closing an endpoint, and apply to both the local 

endpoint and its peer.  

 Further operations through the closing endpoint are not allowed, with the 

exception described below.  
 All previously initiated RMAs to or from windows of the endpoint are allowed to 

complete. 

 Blocked calls to scif_send() or scif_recv() through the closing endpoint 

are unblocked and return the number of bytes sent or received, or return the 
ECONNRESET error if no data was sent or received. 

 Each window of the closing endpoint is unregistered as described for 

scif_unregister(). In particular, the physical pages represented by each 

window remain locked until all references to the window are removed. Thus 

mappings to its windows previously established by scif_mmap() remain until 

removed by scif_mmap(), scif_munmap(), or standard functions such as 

mmap() and munmap(), or until the process holding the mapping is killed. In 

kernel mode, it is an error to call scif_close() on an endpoint for which 

there are outstanding physical page addresses obtained from 

scif_get_pages(). 

If an endpoint was closed because its peer was closed, scif_recv() can be called on 

the local endpoint while its receive buffer is non-empty and will return data until the 
receive queue is empty, at which time it returns the ECONNRESET error. This allows an 
application to send a message, and then close the local endpoint without waiting 
somehow for the message to be received by the remote endpoint. 

In all other cases, a SCIF function call returns the ECONNRESET error if it references an 

endpoint that is no longer connected because the peer endpoint was closed. 

3.9.3 Abnormal Connection Termination 

When a node in the SCIF network is lost and must be reset for some reason, the SCIF 
driver on each other node will kill() any user mode process which has scif_mmap()’d 
pages from the lost node. This is done to prevent corruption of the memory of the lost 

node after it is reset.  

Access to any remaining endpoint which was connected to an endpoint on the lost node 

now returns the ECONNRESET error. The application may scif_close() such an 

endpoint as part of cleaning up from the loss of the node. 

Each kernel mode module that uses SCIF must register a callback routine with the SCIF 

driver: 
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void scif_event_register (scif_callback_t handler); 

that is the routine to be called in the event that a node is added or is lost and must be 

reset. Upon being called with the SCIF_NODE_REMOVED event, and before returning, 
the event handler must return, using scif_put_pages(), all structures obtained using 

scif_get_pages() against an endpoint connected to the lost node. It is 

recommended and expected that the handler will also scif_close() all endpoints 

connected to the lost node. 

3.10 Process Termination 

When a process is terminated, either normally or abnormally, the following steps are 

performed: 

 All remote mappings previously created by scif_mmap() are removed as if 

scif_munmap() were called on the mapping. 

 Physical page addresses obtained from scif_get_pages() are effectively 

returned as if scif_put_pages() were called. 

 Each endpoint owned by the process is closed as if scif_close() were called 

on the endpoint. 

3.11  User Mode Utility Functions 

Several utility functions are defined in the SCIF user mode API: 

 

int scif_get_nodeIDs(uint16_t* nodes, int len, uint16_t* 

self); 

static int scif_get_fd(scif_epd_t epd); 

int scif_poll(struct scif_pollepd* epds, unsigned int nepds, 

long 

timeout); 

The scif_get_nodeIDs() function may be called to obtain the IDs of the nodes 

currently in the SCIF network. This function also returns the ID of the node on which  

the calling process is executing. 

scif_get_fd() returns the file descriptor which backs a specified endpoint descriptor, 

epd. The file descriptor returned can be used when calling poll() or select(). It should in 
this way. This function is only available in the Linux* user mode API 

scif_poll() waits for one of a set of endpoints to become ready to perform an I/O 

operation; it is syntactically and semantically very similar to poll() . The SCIF functions 

on which scif_poll() waits are scif_accept(), scif_send(), and 

scif_recv(). Consult the SCIF header file, scif.h, and the SCIF man pages for details 

on scif_poll() usage. 
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3.12 Kernel Mode Utility Functions 

The scif_get_nodeIDs() and scif_poll() functions are available in kernel mode. 

In addition, the scif_pce_dev() function: 

int scif_pci_dev(uint16_t node, struct pci_dev** pdev); 

returns the pci_dev structure pointer associated with specified SCIF node. This 

structure can then be used in standard Linux* kernel functions to refer to an Intel® 

Xeon Phi™ coprocessor. For example the pci_dev structure can be used to obtain 

system bus addresses from a virtual address or page pointer in calls to Linux* PCIe 

mapping APIs like pci_map_single() or pci_map_page(). 
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4 Programming Considerations 

4.1 Unaligned DMAs 

The Intel® Xeon Phi™ coprocessor DMA engine supports cacheline aligned transfers. 
That is, starting and ending addresses of DMA transfers must be a multiple of 64. SCIF 
RMA APIs (scif_readfrom(), scif_writeto(), scif_vreadfrom(), scif_vwriteto()) may be 

specified with any alignment: The source and destination may have any alignment, 
these alignments may differ, and the length of a transfer need not be a multiple of 64. 

When a request is made to use DMA for a transfer that is not cacheline aligned, SCIF 
uses a combination of DMA and programmed I/O to implement the transfer. Such 

transfers will have lower performance than the cacheline aligned transfers. Therefore, 
optimal DMA performance will likely be realized if both source and destination base 
addresses are cacheline aligned. Lower performance will likely be realized if the source 
and destination base addresses are not cacheline aligned but are separated by some 
multiple of 64. The lowest level of performance is likely if source and destination base 
addresses are not separated by a multiple of 64. 

A suggested workaround is to pad data allocations to ensure cacheline alignment of data 

structures that are to be DMA’d.  

When the source and destination base addresses are cacheline aligned, DMA 

performance will be higher when the source and destination base addresses' page 
offsets are the same than when the page offsets are different. One way to ensure the 

page offsets are the same is to page align the data structures during allocation. 

4.2 Synchronization Overhead 

The scif_fence_mark() and scif_fence_wait() functions should be used 

somewhat judiciously in order to minimize overhead. For example, an application might 

call scif_fence_mark() after each RMA, and then later chose on which mark(s) to 

wait. Such a sequence can have a negative impact on BW, particularly where transfers 
are small. 

4.3 Large pages 

SCIF registration and DMA performance will be better if the buffers being registered are 

backed by huge pages. SCIF registration is improved because the driver requires fewer 
data structures to accurately store meta-data about huge pages which are contiguous in 
physical memory as compared to storing the meta data for every 4K page. SCIF DMA 
performance is improved since the software overhead for programming DMA descriptors 
is reduced. SCIF detects and optimizes for huge pages transparently. The user does not 
need to specify if a virtual address region is backed by huge pages or not. Maximum 

performance benefits will be seen if both source and destination buffers are backed by 
huge pages. 


