
 i

Symmetric Communications
Interface (SCIF)

For Intel® Xeon Phi™ Product

Family
Users Guide

Copyright © 2013-2016 Intel Corporation

All Rights Reserved

Revision: 3.5

World Wide Web: http://www.intel.com

 ii

Disclaimer and Legal Information

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter

drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-

4725 or by visiting: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

 iii

Benchmark and Performance
Disclaimers
Software and workloads used in performance tests may have been optimized for performance only
on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured

using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products.

 iv

Table of Contents
1 Introduction ... 6

1.1 About This User Guide ... 6
1.2 Target Audience .. 6
1.3 Related Documents ... 6
1.4 Terminology and Acronyms .. 6

2 Product Overview ... 7

2.1 Goals and Objectives ... 7
2.1.1 Portability and Platform Independence .. 7

2.2 Product Environment ... 7
2.2.1 Hardware Environment ... 7
2.2.2 Software Environment .. 7

3 SCIF Programming Concepts .. 9

3.1 Nodes .. 9
3.2 Ports ... 9
3.3 Endpoints and Connections .. 9
3.4 Messaging Layer .. 12
3.5 Memory Registration .. 13

3.5.1 Duplication of Endpoint Descriptors Across a fork() 19
3.5.1.1 Registered Memory Across a fork() .. 20

3.5.2 Kernel Mode Registration-Related API .. 21
3.6 Mapped Remote Memory... 22

3.6.1 Kernel Mode Mapping-Related API ... 24
3.7 Remote Memory Access .. 24

3.7.1.1 DMA Ordering ... 27
3.8 RMA Synchronization .. 27
3.9 Registered Window Deletion .. 30

3.9.1 Connection Termination ... 31
3.9.2 Normal Connection Termination .. 31
3.9.3 Abnormal Connection Termination... 31

3.10 Process Termination ... 32
3.11 User Mode Utility Functions ... 32
3.12 Kernel Mode Utility Functions .. 33

4 Programming Considerations .. 34

4.1 Unaligned DMAs ... 34
4.2 Synchronization Overhead .. 34
4.3 Large pages .. 34

 v

Table of Figures
Figure 1: Intel® ManyCore Platform Software Stack (MPSS) ... 8
Figure 2: Connecting two endpoints .. 11
Figure 3: Connected endpoints... 12
Figure 4: Registration mapping to memory objects ... 15
Figure 5: Registered window configurations .. 15
Figure 6: Registered window configurations ... 16
Figure 7: Hard coded registered addresses .. 18
Figure 8: Registered addresses same as virtual addresses ... 19
Figure 9: Registering windows using scif_pin_pages() ... 22
Figure 10: Address space mapping of scif_mmap() ... 23
Figure 11: Virtual address space mapping that intersects multiple windows 24
Figure 12: scif_readfrom()/scif_writeto()address space mapping .. 26
Figure 13: scif_vreadfrom()/scif_vwriteto()address space mapping .. 26
Figure 14: scif_fence_mark()/scif_fence_wait() ... 28
Figure 15: scif_fence_signal() .. 29
Figure 16: Using scif_fence_signal() ... 30

 6

1 Introduction

1.1 About This User Guide

This user guide describes the Symmetric Communication Interface (SCIF) for the Intel®
Xeon Phi™ Product Family. SCIF is a component of the Intel® ManyCore Platform
Software Stack (MPSS). The goal of this document is to present SCIF concepts and

usage. Refer to the SCIF header file, scif.h, and the SCIF man pages for detailed
information on the SCIF API.

1.2 Target Audience

The target audience includes tools developers and application developers. After reading

this document, the reader will be able to use the SCIF interface for communication
between the components of a distributed application.

1.3 Related Documents

Document Title Revision Number Availability

MPI overview and

specification
 http://www.mpi-forum.org/

OFED* overview
http://www.openfabrics.org/OFED-
Overview.html

1.4 Terminology and Acronyms

Term Description

API Application Programming Interface

HCA (Infiniband) Host Channel Adapter

MIC Intel® Many Integrated Core

MPSS ManyCore Platform Software Stack

OFED Open Fabrics Enterprise Distribution

RMA Remote memory access

RDMA Remote direct memory access

http://www.mpi-forum.org/
http://www.openfabrics.org/OFED-Overview.html
http://www.openfabrics.org/OFED-Overview.html

 7

2 Product Overview

2.1 Goals and Objectives

SCIF provides a mechanism for inter-node communication within a single platform,
where a node is an Intel® Xeon Phi™ coprocessor or an Intel® Xeon® host processor
complex. In particular, SCIF abstracts the details of communicating over the PCIe bus

while providing an API that is symmetric between the host and MIC Architecture
devices. An important design objective for SCIF was to deliver the maximum possible

performance given the communication capabilities of the hardware.

2.1.1 Portability and Platform Independence

The Intel® MIC software architecture supports a computing model in which the

workload may be distributed across both the Intel® Xeon® host processor complex and
Intel® MIC Architecture coprocessors. An important property of SCIF is symmetry;
SCIF drivers must present the same interface on both the host processor and the Intel®
MIC Architecture coprocessor in order that software written to SCIF can be executed
wherever is most appropriate.

Since the Intel® MIC Architecture coprocessor may use a different operating system

than that running on the host, the SCIF architecture is designed to be operating system
independent. This ensures SCIF implementations on different operating systems can
inter-communicate.

2.2 Product Environment

As mentioned earlier, the Intel® MIC software architecture supports a computing model
in which the workload is distributed across both Intel® host processors and Intel® MIC
Architecture coprocessors.

2.2.1 Hardware Environment

SCIF supports communication between Xeon host processors and Intel® MIC

Architecture coprocessors within a single platform. Communication between such
components that are in separate platforms can be performed using standard
communication channels such as Infiniband and TCP/IP.

2.2.2 Software Environment

A SCIF implementation on a host or Intel® MIC Architecture coprocessor includes both a

user mode (Ring 3) library and kernel mode (Ring 0) driver as shown in Chapter 3 SCIF
Programming Concepts .Most of the components in the Intel® MPSS use SCIF for
communication. Refer to the Intel® Xeon Phi™ coprocessor (codename: Knights Corner)

 8

Software Developers Guide for a discussion of the other components in the Intel® MPSS
and their relationship to SCIF.

Figure 1: Intel® ManyCore Platform Software Stack (MPSS)

User

Middleware

User

Middleware

PCI Express*

Intel® Xeon® Host Intel® Xeon Phi™

InfiniBand* HCA

Host/SCIF Driver

Linux* Kernel

NetDev

Sockets

uDAPL

TCP/IP

UDP/IP

OFED* Verbs

OFED*/SCIF

Library

HCA

Library

OFED* Core SW

OFED*/

SCIF Driver

HCA

Driver

SCIF Driver

Linux* Micro-OS

NetDev

/sys,/proc

Ganglia*

gmond

Sockets

uDAPL

TCP/IP

UDP/IP

OFED* Verbs

OFED*/SCIF

Library

HCA

Library

OFED* Core SW

OFED*/

SCIF Driver

HCA

Proxy

User SCIF

Library

Legend

MPSS Install

OFED*

ulp’s

HCA

Proxy

IB Proxy

Daemon

Std. SW

Mod. Linux*

Intel® SW

Std. OFED*

Intel® HW

Other HW

Host (R0)

Host (R3)

Board

Tools

Control

Panel

User SCIF

Library

SMC

ME

BMC

Management

Middleware

SMC

Update

Path

Tools & Apps

Intel® TBB OpenMP*

Intel® Vtune

Amplifier XE

Intel® CILK™ Plus Intel® MKL

Intel ® C/C++ and Intel®

Fortran Compilers

Intel® MPI Debuggers Tools & Apps

Intel® TBBOpenMP*

Intel® Vtune

Amplifier XE

Intel® CILK™ PlusIntel® MKL

Intel ® C/C++ and Intel®

Fortran Compilers

Intel® MPIDebuggers

 9

3 SCIF Programming Concepts

The SCIF driver provides a reliable connection-based messaging layer, as well as
functionality which abstracts RMA operations. In the following sections we describe
these architectural concepts in some detail. The SCIF API is documented in the SCIF
header file, scif.h, and the SCIF man pages. A common API is exposed for use in both
user mode (ring 3) and kernel mode (ring 0), with the exception of slight differences in

signature, and several functions which are only available in user mode, and several only
available in kernel mode.

3.1 Nodes

A SCIF node is a physical endpoint in the SCIF network. The host and MIC Architecture

devices are SCIF nodes. From the SCIF point of view, all host processors (CPUs) under a
single OS are considered a single SCIF (host) node.

We generally use node instead of SCIF node where this will not cause confusion.

Each node in the SCIF network has a node identifier that is assigned when the platform

is booted. Node IDs are generally based on PCIe discovery order and, thus, may change
across a platform reboot, however the host node is always assigned ID 0.

3.2 Ports

A SCIF port is a logical destination on a SCIF node. We generally use port rather than
SCIF port. Within a node, a SCIF port on that node may be referred to by its number, a
16-bit integer. This is analogous to an IP port; for instance, SSH usually talks over TCP
port 22. We sometimes use local port to refer to a port that is on the same node as a

particular point of reference.

A SCIF port identifier is unique across a SCIF network, comprising both a node identifier
and a local port number. A SCIF port identifier is analogous to a complete TCP/IP
address (for instance 192.168.1.240:22).

Analogous to Internet sockets, some ports may be well-known, and monitored by

service daemons launched with the local OS or later. Any such services are layered on
SCIF and thus beyond the scope of this document.

3.3 Endpoints and Connections

The entity through which a port is accessed is called an endpoint. An endpoint can be
listening, for example waiting for a connection request from another endpoint, or
connected, for example able to communicate with a remote connected endpoint. A
connection is an association established between two endpoints for the purpose of

communication. The following functions are used during the connection process:

 10

 scif_epd_t scif_open(void);

 int scif_bind(scif_epd_t epd, uint16_t pn);

 int scif_listen(scif_epd_t epd, int backlog);

 int scif_connect(scif_epd_t epd, struct scif_portID* dst);

int scif_accept (scif_epd_t epd, struct scif_portID* peer,

scif_epd_t*

newepd, int flags);

 int scif_close (scif_epd_t epd);

The process for establishing a connection is similar to socket programming: A process

calls scif_open() to create a new endpoint; scif_open() returns an endpoint

descriptor that is used to refer to the endpoint in subsequent SCIF function calls. The

endpoint is then bound to a port on the local node using scif_bind(). An endpoint

which was opened and bound to a port is made a listening endpoint by calling

scif_listen(). To create a connection, a process opens an endpoint and binds it to a

local port, and then requests a connection by calling scif_connect(), specifying the

port identifier of some listening endpoint, usually on a remote node. A process on the

remote node may accept a pending or subsequent connection request by calling

scif_accept(). scif_accept() can conditionally return immediately if there is no

connection request pending, or block until a connection request is received.

The select() and poll() functions can be used from Linux* user mode to determine

when a connection request is received on any of a set of listening endpoints. The

scif_poll() function may be used from Linux* user and kernel modes, and from

Microsoft Windows* user mode for this purpose.

When the connection request is accepted, a new connected endpoint is created, bound
to the same port as the listening endpoint. The requesting endpoint and the new

endpoint are now connected endpoints that form the connection. The listening endpoint
is unchanged by this process. Multiple connections may be established to a port bound
to a listening endpoint.

The following figure illustrates the connection process. In this example, a process on

node i calls scif_open(), which returns endpoint descriptor epdi. It then calls

scif_bind() to bind the new endpoint to local port pm, and then calls

scif_connect() requesting a connection to port pn on node j. Meanwhile, a process

on node j calls scif_open(), getting back endpoint descriptor epdj, binds the new

endpoint associated with epdj to local port pn, and calls scif_listen() to mark the

endpoint as a listening endpoint. Finally, it calls scif_accept() to accept a

connection request. In servicing the connection request, scif_accept() creates a

new endpoint, with endpoint descriptor nepd, which is the endpoint to which epdi is

connected. The endpoints associated with epdi and nepd are now connected

endpoints and may proceed to communicate with each other. The listening endpoint

associated with epdj remains a listening endpoint and may accept an arbitrary number

of connection requests.

 11

Figure 2: Connecting two endpoints

Node i Node j

scif_connect(epdi,

(Nj, pn))

scif_bind(epdi, pm)

scif_bind(epdj, pn)

scif_listen(epdj, qLen)

scif_accept(epdj,

*nepd, peer)

scif_send(epdi,…)/

scif_recv(epdi,...)

scif_send(nepd,…)/

scif_recv(nepd,...)

epdj=scif_open()

epdi=scif_open()

Normally the endpoints of a connection are on different nodes in the SCIF network. We

therefore often refer to these endpoints as local and remote with respect to one end of
the connection. In fact, SCIF fully supports connections in which both endpoints are on
the same node, and we refer to this as a loopback connection.

A process may create an arbitrary number of connections, limited by system resources
(memory). The following figure illustrates a SCIF network of three nodes. Two

connections have been established between nodes 0 and 1, another between nodes 0
and 2. On node N2, a loopback connection was established.

 12

Figure 3: Connected endpoints

N1
N

2N
0

E
P

EP

E
P

EP
E

P

E
P

E
P E

P

The endpoint pair comprising the connection are peer endpoints or just peers. Similarly,
the processes which own the peer endpoints are peer processes, the node on which a
peer endpoint resides is a peer node, and so on.

3.4 Messaging Layer

After a connection is established, messages may be exchanged between the processes
owning the connected endpoints. A message sent into one connected endpoint is
received at the other connected endpoint. Such communication is bi-directional. The

following functions comprise the messaging layer:

int scif_send(scif_epd_t epd,void* msg,int len,int flags);

int scif_recv(scif_epd_t epd,void* msg,int len,int flags);

Messages are always sent through a local endpoint for delivery at a remote connected

endpoint. For each connected pair of endpoints, there is a dedicated pair of message
queues –one queue for each direction of communication. In this way, the forward
progress of any connection is not gated by progress on another connection, which might
be the case were multiple connections sharing a queue pair.

A message may be up to 231-1 bytes long. In spite of this, the messaging layer is

intended for sending short command-type messages, not for bulk data transfers. The
messaging layer queues are relatively short; a long message is transmitted as multiple

 13

shorter queue-length transfers, with an interrupt exchange for each such transfer.
Therefore it is strongly recommended that SCIF RMA functionality be used for sending
larger units of data, for instance longer than 4KiB.

Messages on any connection are received in the order in which they are sent. There are
no guarantees regarding the order in which messages sent on different connections are

received. Moreover, the PCIe bus is assumed to be a reliable transport. Therefore, SCIF
makes no attempt to detect or correct lost or corrupted messages.

The content of a message is not interpreted by the messaging layer, and has meaning
only to the sending and receiving processes. Therefore it is the responsibility of the

application to impose any required structure or protocol.

The messaging layer supports both blocking and non-blocking behaviors. A blocking call

to the scif_send() function will block (not return) until the entire message is sent. A

non-blocking call to the scif_send() function only sends as much data as there is

room in the send queue at the time of the call. In both cases, the number of bytes sent

is returned as the result of the call. The select() and poll() functions can be used

from Linux* user mode to determine when it is possible to send more data on any of a

set of connected endpoints. The scif_poll() function may be used from Microsoft

Windows* and Linux* kernel mode, and from Microsoft Windows* user mode for this

purpose.

Similarly, a blocking call to the scif_recv() function will block until all len bytes

(where len is a parameter specifying the number of bytes to receive) have been

received and copied to the application’s buffer. A non-blocking call to the scif_recv()

function only returns data that is currently in the receive queue (up to some application-
specified maximum number of bytes). In both cases, the number of bytes received is

returned as the result of the call. The select() and poll() functions can be used

from Linux* user mode to determine when more data is available on any of a set of

connected endpoints. The scif_poll() function may be used from Microsoft

Windows* and Linux* kernel modes, and from Microsoft Windows* user mode for this

purpose.

3.5 Memory Registration

Memory registration is the mechanism by which a process exposes ranges of its address

space for controlled access by another process, typically a process on a remote node.
Memory must be registered before it can be mapped to the address space of another
process or be the source or target of an RMA transfer.

Each connected endpoint has a registered address space, a kind of address space

managed by the SCIF driver, ranges of which can represent local physical memory. The
registered address space is sparse in that only specific ranges which have been

registered, called registered windows or just windows, can be accessed. It is an
application error to attempt to access any range of a registered address space which is
not within such a window.

We use the term offset to mean a location in a registered address space in analogy to

the mapping from virtual address space to a shared memory object established by the

Posix mmap() function. In the Posix mmap() function, an offset parameter specifies the

offset, from the beginning of the memory object, of the range onto which the virtual

 14

address range is mapped. Essentially an offset is an address in some registered address
space, therefore we sometimes talk about a registered address.

The following functions support registration:

off_t scif_register(scif_epd_t epd, void* addr, size_t len,

off_t

 offset, int prot_flags, int map_flags);

int scif_unregister(scif_epd_t epd, off_t offset, size_t

len);

The scif_unregister() function and window deletion is discussed in a later section.

[In this and subsequent sections, we talk about ranges in virtual and registered address
spaces. The reader should understand that these are specified by the (addr,len) and
(offset,len) parameter pairs respectively. Registration granularity is 4KiB (a small page)

so the addr, offset and len parameters to scif_register() must be multiples

of 4KiB.]

The scif_register() function establishes a mapping between a range in the

registered address space of some connected endpoint of the calling process and a set of

physical pages. The physical pages are indirectly identified by specifying a range in the
user virtual address space of the calling process. The mapping, then, is from the
specified range in some registered address space to the physical pages which back the
specified virtual address range. This mapping between registered address space and
physical memory remains even if the specified virtual address range is unmapped or
remapped to some different physical pages or object.

In the following figure, the left diagram illustrates a registered window, W, at the time

of its creation by scif_register(). The pages of W, a range in the registered

address space of some local endpoint, represent some set, P1, of physical pages in local
memory. P1 is the set of physical pages which backed a specified virtual address range,

VA, at the time that scif_register() was executed. Even if the virtual address

range, VA, is subsequently mapped to different physical pages P2, W continues to
represent P1. Of course, the process now has no way to access the registered memory
in order to read or write RMA data unless those physical pages back some other virtual
address range.

For simplicity, we show P1 and P2 as contiguous ranges in physical memory, whereas
they may be discontiguous.

 15

Figure 4: Registration mapping to memory objects

Virtual Address

Space

Registered

Address Space

Physical

Address Space

VA

W

P1

0

VA

W

P1P2

Though a window is a mapping in the mathematical sense, we generally say that the

registered address space range of a window represents the corresponding physical

pages. This is intended to avoid confusion with mappings created by scif_mmap() or

mmap()) described later.

The physical pages which a window represents are pinned (locked) in memory so that
they can be accessed from a remote SCIF node. Therefore it is an error to specify a

virtual address range to scif_register() for which the backing pages cannot be

pinned for whatever reason. The pages which a window represents remain pinned as
long as the window exists. As will be explained below, a physical page may be
represented by more than one window. Such a page will remain locked until all such

windows are unregistered.

The scif_unregister() function is used to delete one or more windows and is

discussed in more detail later.

Figure 5: Registered window configurations

 16

This figure illustrates several registered window configurations. It shows the physical

space of a node which has two connected endpoints, possibly owned by different
processes. Each endpoint has an independent registered address space associated with
it (for simplicity, we do not illustrate the virtual memory ranges which the physical
ranges back).

 Windows W1a and W2a represent the same physical address range but have

different offsets in their respective registered address spaces.

 W1b and W2b have the same offset (the light gray dashed lines help show this) but
represent different physical address ranges.

 W1c and W1d are disjoint windows in the same registered address space, but
represent overlapping physical address ranges.

The extra degree of freedom offered by registered address spaces may be useful for

solving various communication and programming problems.

Figure 5: Registered window configurations

0

b 2 W a 2 W

d 1 W c 1 W b 1 W a 1 W

Pd Pc Pb Pa

2 Address Space
Local Registered

1 Address Space
Local Registered

Space
Physical Address

 17

We refer to a window in the registered address space of the peer of a local endpoint as a
remote window. Every window in the registered address space of a local endpoint is a

remote window to the peer endpoint. Several SCIF functions (scif_readfrom(),

scif_writeto(), scif_vreadfrom(), scif_vwriteto(), scif_mmap(), and

scif_get_pages()) access remote windows or portions thereof, and specified as an

offset and length in the registered address space of the peer of a specified local
endpoint.

The management of a registered address space can be performed by SCIF, by the

application or both, and is controlled by the map flags parameter to scif_register().

When SCIF_MAP_FIXED is set in map_flags, SCIF attempts to allocate the window at the

registered address specified in the offset parameter. Otherwise, SCIF selects a
registered address at which to allocate the window.

In Figure 6 the application has create three windows at offsets 0x1000, 0x3000 and
0x5000 respectively (by passing the SCIF_MAP_FIXED flag), each 0x1000 bytes long. If

these offsets are coded in the peer application, then it knows the offsets to use to
access these windows, for example in performing an RMA.

Physical Address
Space

Local Registered
Address Space 1

Local Registered
Address Space 2

Pa Pb Pc Pd

W 1 a W 1 b W 1 c W 1 d

W 2 a W 2 b

0

 18

Figure 6: Hard coded registered addresses

Virtual Address

Space

Registered

Address Space

Physical

Address Space

VA1

W1

P1

0

VA3

W2

P2P3

VA2

W3
0x1000 0x2000 0x3000 0x4000 0x5000 0x6000

As an alternative, an application can use the virtual address as the offset when
registering a window. In this way the application need not “remember” the offset of the
window corresponding to some virtual address. This is illustrated in Figure 7.

 19

Figure 7: Registered addresses same as virtual addresses

Virtual Address

Space

Registered

Address Space

Physical

Address Space

VA1

W1

P1

0

VA3

W3

P2 P3

VA2

W2
0x1000 0x2000 0x3000 0x4000 0x5000 0x6000

The scif_register() function also takes a prot_flags parameter which controls

access to the window being registered. The SCIF_PROT_READ flag marks a window as
allowing read operations; specifically the window can be the source of an RMA
operation. Similarly the SCIF_PROT_WRITE flag marks a window as allowing write

operations; specifically the window can be the destination of an RMA operation.

The scif_mmap() function (described more fully later) also takes a prot_flags

parameter. The SCIF_PROT_READ flag indicates that the mapped region is to be
readable; it is an error if the referenced window was not also registered with the
SCIF_PROT_READ flag. Similarly the SCIF_PROT_WRITE flag indicates that the mapped
region is to be writable; it is an error if the referenced window was not also registered
with the SCIF_PROT_WRITE flag.

These flags only control access to windows; they do not control access to the physical
pages which a window represents where those pages back virtual memory. Thus,
referring back to Figure 7, the process which registered window W has access to the
pages P1 through the virtual addresses VA regardless of the protections on window W.
Similarly, once a (portion of a) window is mapped using scif_mmap(), the application

may read or write to the mapped physical pages regardless of the prot_flags

specified when scif_mmap() was called. Referring ahead to, the process which mapped a

range, RR, of remote window RW into a range of its address space at VA, can both read

and write to pages P through VA, regardless of the value of prot_flags.

3.5.1 Duplication of Endpoint Descriptors Across a fork()

On Linux*, an endpoint is implemented as a file description, and an endpoint descriptor
as a file descriptor. If an application opens an endpoint and then fork()’s, the parent and

 20

child will each have an endpoint descriptor (file descriptor) which refers the same
endpoint. The parent and child then share the registered address space of this endpoint.
Consider the following scenario:

Parent:

scif_epd_t epd = scif_open();

scif_connect(epd, pn);

fork();

off_t po =

scif_register(epd,addr1,0x1000,

 0x10000,3,0);

scif_readfrom(epd,0x20000,len1,

 roff1,flags);

Child:

off_t po =

scif_register(epd,addr2,0x1000,

 0x20000,3,0);

scif_readfrom(epd,0x10000,len2,

 roff2,flags);

After the fork(), both the parent and child have an endpoint descriptor, epd, which

refers to the endpoint created by the parent. The parent now registers a window at
offset 0x10000 that represents the physical page backing the page at its addr1.
Similarly the child registers a window at offset 0x20000 that represents the physical
page backing the page at its addr2. Because both windows are in the same registered

address space, the child can access the parent’s memory and vice versa. That is, any
memory registered to this endpoint is shared by the two processes. For example, each
can initiate an RMA which transfers data into the shared pages. This behavior, while
perhaps surprising, is consistent with fork() semantics regarding duplication of file
descriptors.

3.5.1.1 Registered Memory Across a fork()

Linux*’ copy-on-write semantics mean that, following a fork(), both the parent and child
process will have page table entries pointing to the same physical pages. Because those
pages are write protected, when one of the processes, either parent or child, writes to a
page, the hardware will trap the write event. The kernel will respond by allocating a new

page and copying the contents from the original page, breaking the linkage to the
physical page for that process.

Consider the case that a process registers a window and then fork()’s. Suppose the
parent now writes directly to a virtual address corresponding to a page of the window; it
will be allocated a new physical page. However, subsequent RMAs to or from the window

offset that corresponds to that virtual address will, however, access the original physical
page at the time of registration, not the newly allocated physical page; the physical
pages that the window represents are unchanged. Thus, data which the parent process

writes to the newly allocated page will not be sent when a scif_writeto() RMA is

performed, and data received when a scif_readfrom() RMA is performed will not be

read by the process.

To prevent this from happening, it is recommended that the parent mark the virtual
address range of a registered window as MADV_DONTFORK, if the process will fork()

after performing the registration. Doing this prevents the virtual address range from
being seen by the child, so it is only seen by the parent, and copy-on-write semantics
do not apply to that range.

A similar problem can occur if a process registers a window after a fork() in which the
virtual address range was allocated before the fork(), since that virtual address range

 21

might now be subject to copy-on-write semantics. There are several possible solutions
to this problem:

 Mark the virtual address range to be registered as MADV_DONTFORK before the
fork(). The virtual address range will now only be available for registration by
the parent.

 (After the fork…) In one or the other process, write to all the pages of the range
to force new pages to be allocated

3.5.2 Kernel Mode Registration-Related API

Several additional functions are available in kernel mode to solve specific programming
requirements:

int scif_pin_pages(void* addr, size_t len, int prot_flags,

int

 map_flags, scif_pinned_pages_t* pages);

int scif_unpin_pages(scif_pinned_pages_t pinned_pages);

off_t scif_register_pinned_pages(scif_epd_t epd,

scif_pinned_pages_t

 pinned_pages, off_t offset, int map_flags);

scif_pin_pages() pins the set of physical pages which back a range of virtual

address space, and returns a handle which may subsequently be used in calls to

scif_register_pinned_pages() to create windows which represent the set of

pinned pages. The windows so created are otherwise identical to windows created by

scif_register(). The handle is freed by scif_unpin_pages(), but the physical

pages themselves remain pinned as long as there is a window which represents the

pages. Unlike scif_register() which interprets the address passed it as a user

space address, scif_pin_pages() interprets the address passed it as a kernel space

address if the map_flags parameter has the SCIF_MAP_KERNEL flag.

Figure 8 illustrates this process. In the leftmost panel, scif_pin_pages() pins the

set of physical pages, P1, which back some range, VA, of virtual address space. In the
center panel, a window, W1, is registered, using

scif_register_pinned_pages(), at some offset in some Registered Address

Space 1, and represents the physical pages P1. In the rightmost panel, a second

window, W2, is registered, again using scif_register_pinned_pages(), at some

offset in some Registered Address Space 2, and also represents the physical pages P1.

At the same time, the mapping of VA was changed to the set of physical pages, P2, but
windows W1 and W2 continue to represent P1.

 22

Figure 8: Registering windows using scif_pin_pages()

Virtual Address

Space

Registered Address

Space 2

Physical Address

Space

VA

P1

0

Registered Address

Space 1

VA

W1

P1

VA

W1

P1P2

W2

3.6 Mapped Remote Memory

The SCIF mapping functions enable mapping some physical memory on a remote node

into the virtual address space of a process. Once established, a read or write access to

such a mapped range of virtual address space will read or write to the corresponding
mapped physical memory location. The mapping functions are:

void* scif_mmap(void* addr, size_t len, int prot_flags, int

map_flags,

scif_epd_t epd, off_t offset);

int scif_munmap (void* addr, size_t len);

Note: These functions are only available in the user mode API.

The mapping esta

blished by a scif_mmap() operation is illustrated in the following figure:

 23

Figure 9: Address space mapping of scif_mmap()

Remote Physical Address

Space

Remote Registered

Address Space

Local Process Virtual

Address Space
VA

P

RR

0

Local Node

Remote Node

RW

The process performing the scif_mmap() operation specifies a range, VA, within its

local virtual address space, and a corresponding range, RR, of the same length within a

peer remote registered address space. The composition of the mapping from VA to RR
and the mapping from RR to P, the set of physical pages represented by RR, defines a

mapping (black lines) from VA to P. scif_mmap() modifies the page table of the

process according to this mapping. Hence, reads from and writes to VA will actually read
from or write to corresponding locations in the physical pages P.

 24

Figure 10: Virtual address space mapping that intersects multiple windows

Remote Physical Address

Space

Remote Registered

Address Space

Local Process Virtual

Address Space
VA

P1

RR

0

Local Node

Remote Node

RW1 RW2

P2

The remote registered address range may not intersect any portion of the remote virtual

address space which is not within a window, but may intersect multiple remote
windows. Therefore those multiple windows must be contiguous in their registered
address space. In Figure 10, RR intersects windows RW1 and RW2, which represent
physical memory ranges P1 and P2 respectively. Thus access to an address in VA will be
vectored to a page in P1 or P2 depending on whether the address in VA maps to RW1 or

RW2.

While a remote mapping exists, the remote pages remain pinned and available for

access, even if the peer endpoint referenced when the mapping was created is closed,

either explicitly or because the peer process is killed. scif_munmap() unmaps some

range of pages in the callers address space. Subsequent access to such virtual pages

results in a segmentation fault. scif_munmap() does not take an endpoint parameter;

if a page in the specified range was not mapped using scif_mmap(), the effect will be

as if mmap() was called on that page.

3.6.1 Kernel Mode Mapping-Related API

The kernel mode API provides a similar capability to scif_mmap() through the

scif_get_pages() and scif_put_pages() functions. scif_get_pages() takes

a range in some remote window and returns a structure listing the physical addresses of
pages which are represented by the registered address space range. Those physical
pages will continue to be available until the structure obtained from

scif_get_pages() is returned in a call to scif_put_pages().

3.7 Remote Memory Access

SCIF RMA operations are intended to support the one-sided communication model which

has the advantage that a read/write operation can be performed by one side of a
connection when it knows both the local and remote locations of data to be transferred.
One-sided calls can often be useful for algorithms in which synchronization would be

 25

inconvenient (for instance distributed matrix multiplication), or where it is desirable for
tasks to be able to balance their load while other processors are operating on data.

The following functions comprise the RMA group:

int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len,

off_t

 roffset, int rma_flags);

int scif_writeto(scif_epd_t epd, off_t loffset, size_t len,

off_t

 roffset, int rma_flags);

int scif_vreadfrom(scif_epd_t epd, void* addr, size_t len,

off_t

 offset, int rma_flags);

int scif_vwriteto(scif_epd_t epd, void* addr, size_t len,

off_t

 offset, int rma_flags);

The scif_readfrom() and scif_writeto() functions perform DMA or CPU based

read and write operations, respectively, between physical memory of the local and

remote nodes of the specified endpoint and its peer. The physical memory is that which
is represented by specified ranges in the local and remote registered address spaces of
a local endpoint and its peer remote endpoint. Specifying these registered address
ranges establishes a correspondence between local and remote physical pages for the

duration of the RMA operation. The rma_flags parameter controls whether the

transfer is DMA or CPU based.

Figure 11 illustrates such a mapping. The process performing the operation specifies a

range, LR, within the registered address of one of its connected endpoints, and a
corresponding range, RR, of the same length within the peer endpoint’s registered
address space. Each specified range must be entirely within a previously registered
window or contiguous windows of the corresponding registered address spaces. The
solid green lines represent the correspondence between the specified ranges in the local
and remote registered address spaces; the dashed green lines represent the projections

into their respective physical address spaces. This defines an overall effective
correspondence (black lines) between the physical address space of the local node and
that of the remote node of the peer registered address space.

Hence, a DMA operation will transfer data between LP and RP (again, LP and RP are
typically not contiguous).

 26

Figure 11: scif_readfrom()/scif_writeto()address space mapping

0

Local Node

Remote Node

Local Physical

Address Space

LP

Local Registered

Address Space LRLW

Remote Registered

Address Space
RR RW

Remote Physical

Address Space RP

scif_vreadfrom() and scif_vwriteto() are variants of scif_readfrom()

and scif_writeto(). Rather than taking a local registered address space range

parameter, these functions take a local user address space range, V. Transfers are then

between the local physical pages, LP, which back V, and the remote physical pages, RP
which are represented by RR. The resulting address space mapping is illustrated in
Figure 12.

Figure 12: scif_vreadfrom()/scif_vwriteto()address space mapping

0

Local Node

Remote Node

Local Physical

Address Space

LP

Local Virtual

Address Space V

Remote Registered

Address Space
RR RW

Remote Physical

Address Space RP

 27

If it is known that a buffer will be used multiple times as the source or destination of an

RMA, then it is typically beneficial to scif_register() the buffer and use

scif_readfrom() and scif_writeto() to perform the transfers. However, if it’s

known that the buffer will only be used once, or if it is unknown if the buffer will be used
multiple times (this might be the case in a library on top of SCIF), then using

scif_vreadfrom() and scif_vwriteto() may provide a performance advantage

as compared to registering some window in the local registered address space,

performing a single RMA operation to or from that window, and then unregistering the
window.

As mentioned, in some cases it is not known whether a local buffer will be used in

subsequent transfers. For this case, the scif_vreadfrom() and scif_vwriteto()

functions have a caching option. When the rma_flags parameter includes the

SCIF_RMA_USECACHE flag, physical pages that were pinned in order to perform the

RMA may remain pinned after the transfer completes. This may reduce overhead if
some or all of the same virtual address range is referenced in a subsequent execution of

scif_vreadfrom() or scif_vwriteto() since pinning pages has relatively high

overhead. A cached page is evicted from the cache in the event that it no longer backs

the user space page that it backed when first cached.

3.7.1.1 DMA Ordering

The Intel® Xeon Phi™ coprocessor DMA engine does not maintain write ordering. That
is some written data may become visible before written data with a lower address. This

might be an issue if the process to which data is being transferred polls the last byte of
a buffer for some trigger value as an indication that the transfer has completed.

When the rma_flags parameter includes the SCIF_RMA_ORDER flag, the last

cacheline or partial cacheline of the transfer is written after the all other data in the

transfer is written. There is slight performance penalty for invoking this feature.

Similarly, the order in which any two RMA transfers complete is indeterminate. SCIF

synchronization functions, described in the next section, can be used to synchronize to
the completion of RMA transfers.

3.8 RMA Synchronization

SCIF supports the ability of a process to synchronize with the completion of RMA
operations previously initiated against one of its endpoints, or against a peer of one of
its endpoints. The following functions comprise the synchronization group:

int scif_fence_mark(scif_epd_t epd, int flags, int* mark);

int scif_fence_wait(scif_epd_t epd, int mark);

int scif_fence_signal(scif_epd_t epd, off_t loff, uint64_t

lval, off_t

roff, uint64_t rval, int flags);

There are two synchronization methods available. The first method uses both the

scif_fence_mark() and scif_fence_wait() functions. The

scif_fence_mark() function marks the set of RMAs previously initiated against a

 28

specified endpoint or against its peer, and which have not yet completed.

scif_fence_mark() returns a handle to the application which the application can

later pass to scif_fence_wait() in order to await completion of all RMAs in the

marked set. If the flags parameter has the SCIF_FENCE_INIT_SELF flag, then

scif_fence_mark() marks RMAs initiated through the local endpoint. If the flags

parameter has the SCIF_FENCE_INIT_PEER flag, then scif_fence_mark() marks

RMAs initiated through the peer endpoint. flags can have only one of these flags

values.

Figure 13: scif_fence_mark()/scif_fence_wait()

scif_fence_wait(epd,m)

scif_fence_mark(epd,flag,*m)

RAS

T
im

e

t1

t2

t3

t6

t7

RMA2

RMA1

t4

t5

RMA3

This is illustrated in Figure 13 (the triangles are meant to indicate RMA progress over
time). RMA1 and RMA2 are initiated at times t1 and t2, respectively, against some

endpoint descriptor epd. At time t3, scif_fence_mark() is called, marking RMA1

and RMA2 as members of some set, and returning a handle m to that set. At time t4,

RMA3 is initiated. The application then calls scif_fence_wait() at time t5 to await

the completion of RMAs in the set indicated by handle m. scif_fence_wait() then

returns at time t6 when RMA1 completes.

The second synchronization method uses the scif_fence_signal(). This function

returns after conceptually marking the set of RMAs previously initiated against a
specified endpoint or against its peer endpoint, and which have not yet completed. Like

scif_fence_mark(), if the flags parameter has the SCIF_FENCE_INIT_SELF flag,

then scif_fence_mark() marks RMAs initiated through the local endpoint. If the

flags parameter has the SCIF_FENCE_INIT_PEER flag, then scif_fence_mark()

marks RMAs initiated through the peer endpoint. flags can have only one of these

flags values.

When all the RMAs in the marked set have completed, an application specified value,

lval, is written to a specified offset, loff, in the registered address space of a local

endpoint and/or another application specified value, rval, is written to another

specified offset, roff, in the registered address space of the peer of the local endpoint,

 29

as specified by the SCIF_SIGNAL_LOCAL and SCIF_SIGNAL_REMOTE flag values. Each
specified offset must be within a registered window of the corresponding registered
address space.

The local process and/or the peer process may poll the virtual address which maps to
the specified registered address space offset waiting for the specified value(s) to be

written.

scif_fence_signal() is illustrated in Figure 14 in which the same sequence of

RMAs is initiated. The application calls scif_fence_signal() at time t3, passing a

local offset, loff, and a value, v to be written to loff. Then

scif_fence_signal() returns after marking RMA1 and RMA2, that were previously

initiated and have not completed. At time t6, when all RMAs in the marked set have

completed, a value v is written to the registered address space at offset loff. (For

simplicity, we don’t try to illustrate writing to values to both the local and remote

registered address spaces.)

Figure 14: scif_fence_signal()

scif_fence_signal(ep,loff,v,

0,0,flags)

RAS

T
im

e

t1

t2

t3

t6

t7

RMA2

RMA1

t4

t5

RMA3

write v

loff

Marking a set of RMAs does not impose a barrier. That is, an RMA that is submitted after
a set of RMAs is marked can begin transferring, and even complete its transfer, before

the marked set completes. This is the case for both synchronization methods. For
example, in the figure above RMA3 is shown to access some of the same registered
address range as RMA1 while RMA1 is in progress. Thus if RMA1 is a transfer to some
memory and RMA3 is a transfer out of some of the same memory, RMA3 would likely

not transfer out the expected data in this case. It is the application’s responsibility to
order RMAs as needed by using SCIF synchronization functionality to await the
completion of previous RMAs before subsequent RMAs are submitted. In this case, the

application should wait until after RMA1 and RMA2 have completed by polling for v
before initiating RMA3:

 30

Figure 15: Using scif_fence_signal()

scif_fence_signal(ep,loff,v,

0,0,flags)

RAS

T
im

e

t1

t2

t3

t6

t7

RMA2

RMA1

t4

t5

RMA3 write v

loff

In the case that an application must wait for a DMA transfer to complete before it can do
any other work, it can use either of the two fence mechanisms described above.

Alternatively, if the rma_flags parameter of any RMA API includes the

SCIF_RMA_SYNC flag, then control will not return to the application until the RMA has
completed.

3.9 Registered Window Deletion

The scif_unregister() function is used to delete one or more registered windows,

as specified by a local endpoint and a range within that endpoint’s registered address
space. The range must completely encompass zero or more windows. Deleting a portion
of a window is not supported.

After scif_unregister() is called to delete a window, the registered address space

range of the window is no longer available for use in calls to scif_mmap(),

scif_get_pages(), scif_readfrom(), scif_writeto(),

scif_vreadfrom(), scif_vwriteto() and scif_fence_signal(). However,

the window continues to exist until all references to the window are removed. A window

is referenced if there is a mapping to it created by scif_mmap(), or if

scif_get_pages() was called against the window (and the pages have not been

returned via scif_put_pages()). A window is also referenced while an RMA, in which

some range of the window is a source or destination, is in progress. Finally a window is

referenced while some offset in that window was specified to scif_fence_signal(),

and the RMAs marked by that call to scif_fence_signal() have not completed.

Until the window is deleted, no portion of its registered address space range can be
used to create a new window, and all the physical pages represented by that window
remain locked.. A physical page can be represented by multiple windows; for example,
see cases 1 and 3. Such a page remains locked until all the windows which represent it
are deleted.

 31

3.9.1 Connection Termination

We distinguish between normal connection termination that is triggered by one of the
processes at each end of a connection, and abnormal termination triggered when a node
becomes “lost”.

3.9.2 Normal Connection Termination

A connection is terminated when scif_close() is called on one of its endpoints. The

following steps describe the process of closing an endpoint, and apply to both the local

endpoint and its peer.

 Further operations through the closing endpoint are not allowed, with the

exception described below.
 All previously initiated RMAs to or from windows of the endpoint are allowed to

complete.

 Blocked calls to scif_send() or scif_recv() through the closing endpoint

are unblocked and return the number of bytes sent or received, or return the
ECONNRESET error if no data was sent or received.

 Each window of the closing endpoint is unregistered as described for

scif_unregister(). In particular, the physical pages represented by each

window remain locked until all references to the window are removed. Thus

mappings to its windows previously established by scif_mmap() remain until

removed by scif_mmap(), scif_munmap(), or standard functions such as

mmap() and munmap(), or until the process holding the mapping is killed. In

kernel mode, it is an error to call scif_close() on an endpoint for which

there are outstanding physical page addresses obtained from

scif_get_pages().

If an endpoint was closed because its peer was closed, scif_recv() can be called on

the local endpoint while its receive buffer is non-empty and will return data until the
receive queue is empty, at which time it returns the ECONNRESET error. This allows an
application to send a message, and then close the local endpoint without waiting
somehow for the message to be received by the remote endpoint.

In all other cases, a SCIF function call returns the ECONNRESET error if it references an

endpoint that is no longer connected because the peer endpoint was closed.

3.9.3 Abnormal Connection Termination

When a node in the SCIF network is lost and must be reset for some reason, the SCIF
driver on each other node will kill() any user mode process which has scif_mmap()’d
pages from the lost node. This is done to prevent corruption of the memory of the lost

node after it is reset.

Access to any remaining endpoint which was connected to an endpoint on the lost node

now returns the ECONNRESET error. The application may scif_close() such an

endpoint as part of cleaning up from the loss of the node.

Each kernel mode module that uses SCIF must register a callback routine with the SCIF

driver:

 32

void scif_event_register (scif_callback_t handler);

that is the routine to be called in the event that a node is added or is lost and must be

reset. Upon being called with the SCIF_NODE_REMOVED event, and before returning,
the event handler must return, using scif_put_pages(), all structures obtained using

scif_get_pages() against an endpoint connected to the lost node. It is

recommended and expected that the handler will also scif_close() all endpoints

connected to the lost node.

3.10 Process Termination

When a process is terminated, either normally or abnormally, the following steps are

performed:

 All remote mappings previously created by scif_mmap() are removed as if

scif_munmap() were called on the mapping.

 Physical page addresses obtained from scif_get_pages() are effectively

returned as if scif_put_pages() were called.

 Each endpoint owned by the process is closed as if scif_close() were called

on the endpoint.

3.11 User Mode Utility Functions

Several utility functions are defined in the SCIF user mode API:

int scif_get_nodeIDs(uint16_t* nodes, int len, uint16_t*

self);

static int scif_get_fd(scif_epd_t epd);

int scif_poll(struct scif_pollepd* epds, unsigned int nepds,

long

timeout);

The scif_get_nodeIDs() function may be called to obtain the IDs of the nodes

currently in the SCIF network. This function also returns the ID of the node on which

the calling process is executing.

scif_get_fd() returns the file descriptor which backs a specified endpoint descriptor,

epd. The file descriptor returned can be used when calling poll() or select(). It should in
this way. This function is only available in the Linux* user mode API

scif_poll() waits for one of a set of endpoints to become ready to perform an I/O

operation; it is syntactically and semantically very similar to poll() . The SCIF functions

on which scif_poll() waits are scif_accept(), scif_send(), and

scif_recv(). Consult the SCIF header file, scif.h, and the SCIF man pages for details

on scif_poll() usage.

 33

3.12 Kernel Mode Utility Functions

The scif_get_nodeIDs() and scif_poll() functions are available in kernel mode.

In addition, the scif_pce_dev() function:

int scif_pci_dev(uint16_t node, struct pci_dev** pdev);

returns the pci_dev structure pointer associated with specified SCIF node. This

structure can then be used in standard Linux* kernel functions to refer to an Intel®

Xeon Phi™ coprocessor. For example the pci_dev structure can be used to obtain

system bus addresses from a virtual address or page pointer in calls to Linux* PCIe

mapping APIs like pci_map_single() or pci_map_page().

 34

4 Programming Considerations

4.1 Unaligned DMAs

The Intel® Xeon Phi™ coprocessor DMA engine supports cacheline aligned transfers.
That is, starting and ending addresses of DMA transfers must be a multiple of 64. SCIF
RMA APIs (scif_readfrom(), scif_writeto(), scif_vreadfrom(), scif_vwriteto()) may be

specified with any alignment: The source and destination may have any alignment,
these alignments may differ, and the length of a transfer need not be a multiple of 64.

When a request is made to use DMA for a transfer that is not cacheline aligned, SCIF
uses a combination of DMA and programmed I/O to implement the transfer. Such

transfers will have lower performance than the cacheline aligned transfers. Therefore,
optimal DMA performance will likely be realized if both source and destination base
addresses are cacheline aligned. Lower performance will likely be realized if the source
and destination base addresses are not cacheline aligned but are separated by some
multiple of 64. The lowest level of performance is likely if source and destination base
addresses are not separated by a multiple of 64.

A suggested workaround is to pad data allocations to ensure cacheline alignment of data

structures that are to be DMA’d.

When the source and destination base addresses are cacheline aligned, DMA

performance will be higher when the source and destination base addresses' page
offsets are the same than when the page offsets are different. One way to ensure the

page offsets are the same is to page align the data structures during allocation.

4.2 Synchronization Overhead

The scif_fence_mark() and scif_fence_wait() functions should be used

somewhat judiciously in order to minimize overhead. For example, an application might

call scif_fence_mark() after each RMA, and then later chose on which mark(s) to

wait. Such a sequence can have a negative impact on BW, particularly where transfers
are small.

4.3 Large pages

SCIF registration and DMA performance will be better if the buffers being registered are

backed by huge pages. SCIF registration is improved because the driver requires fewer
data structures to accurately store meta-data about huge pages which are contiguous in
physical memory as compared to storing the meta data for every 4K page. SCIF DMA
performance is improved since the software overhead for programming DMA descriptors
is reduced. SCIF detects and optimizes for huge pages transparently. The user does not
need to specify if a virtual address region is backed by huge pages or not. Maximum

performance benefits will be seen if both source and destination buffers are backed by
huge pages.

