

LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ

Intel® Manycore Platform Software Stack

(Intel® MPSS)

User's Guide (Windows*)

Copyright © 2013-2014 Intel Corporation

All Rights Reserved

Document Number: 330077-001US

Revision: 3.2

World Wide Web: http://www.intel.com

Intel® Manycore Platform Software Stack (Intel® MPSS)

ii Document Number: 330077-001US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU

PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND

EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH

ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,

MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any

features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or

incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or

go to: http://www.intel.com/design/literature.htm

This document contains information on products in the design phase of development. (Remove prior to final release)

Intel, the Intel logo, Intel Xeon , and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Introduction

User's Guide (Windows) iii

Revision History

Revision
Number

Description Revision Date

0.1 Initial draft. June 2013

0.2 Revised Section 9.1.1. June 2013

0.3 Added Section 11.7. June 2013

0.4 Added Section 11.3.1. Revised Sections 2.3, 5.1, 6.1, 9.2, 10.2.4,
10.3, 11.3, 11.4, 11.5, and 11.6.

August 2013

0.5 Added Section 12.2. Revised Section 5.2.2. August 2013

0.6 Revised Sections 1, 5.2.3, and 11.7. August 2013

0.7 Revised Section 12.2. August 2013

0.8 Revised Sections 1, 2, 2.2, 2.3, 3.1.2, 3.1.5, 4.3.2, 4.3.3, 5, 5.1,
5.2.3, 5.3.1, 6.2, 9.1, 9.1.1, 11.1, 11.2, 11.3.1, 11.7, and 12.1.

August 2013

0.9 Inserted new Section 10. September 2013

1.0 Revised Section 13.1. September 2013

1.1 Added Section 13.3. September 2013

1.2 Revised Sections 5, 5.2.3, 12.2, and 12.3. September 2013

1.3 Revised Section 13.3. September 2013

1.4 Inserted new Section 13. September 2013

1.5 Inserted new Section 9. Updated hyperlinks to Sections 12 and 13
(previously Sec. 11 & 12).

September 2013

1.6 Added Section 13.1.1. Revised Section 5.2.2. September 2013

1.7 Revised Section 15.2. Inserted new Section 15.3. October 2013

1.8 Revised Sections 13.1 and 13.1.1. October 2013

1.9 Inserted new Sections 13.7 and 13.8. November 2013

2.0 Revised Sections 13.1, 13.1.1, and 13.9. Revised Figure 1. November 2013

2.1 Revised page footers. December 2013

2.2 Added Sections 4.5, 4.5.1, 4.5.2 and 4.5.3. December 2013

2.3 Revised Section 4.1. December 2013

2.4 Revised Section 4.5.2. December 2013

2.5 Revised Sections 12, 12.1, 12.2, 12.2.4, and 12.3. January 2014

Intel® Manycore Platform Software Stack (Intel® MPSS)

iv Document Number: 330077-001US

2.6 Moved Sections 13.1 to 13.3, 13.2 to 13.4, 13.3 to 13.2, and 13.4
to 13.1. Revised Sections 10.1.1, 13, 13.2, and 13.2.1(formerly
13.3.1).

January 2014

2.7 Added Section 15.4.1. Revised Section 15.4. January 2014

2.8 Inserted new Section 13.2. Revised Sections 13.3 and 13.4
(previously Sec. 13.2 & 13.3). Updated hyperlinks to Sections 13.3,
13.4, and 13.4.1 (previously Sec. 13.2, 13.3, & 13.3.1).

January 2014

2.9 Revised Sections 2.2, 4.5, 6, and 7.1. January 2014

3.0 Revised Section 12.2.3. January 2014

3.1 Revised Sections 15.4 and 15.4.1. January 2014

3.2 Revised Section 14.1. February 2014

Introduction

User's Guide (Windows) v

Contents

1 Introduction .. 1

2 Post Installation Quick Configuration ... 2

2.1 Step 1: Ensure Admin Access ... 2

2.2 Step 2: Change Configuration .. 2

2.3 Step 3: Start the IntelÈ Xeon PhiÊ Coprocessors 2

3 Intel® MPSS Boot Process .. 4

3.1 Booting the IntelÈ Xeon PhiÊ Coprocessor Card............................... 5

3.1.1 Kernel Command Line .. 5

3. 1.2 Instruct the Driver to Boot the IntelÈ Xeon PhiÊ

Coprocessor Card ... 5

3.1.3 Linux* Kernel Executes ... 5

3.1.4 Root is the Initial R am Disk ... 6

3.1.5 Root is a Ram Disk Image .. 6

3.1.6 Notify the Host that the IntelÈ Xeon PhiÊ Coprocessor

System is Ready ... 6

4 Configuration .. 7

4.1 Configurable Components .. 7

4.2 Configuration Files .. 7

4.2.1 File Location and Format ... 7

4.3 Configuring Boot Parameters .. 7

4. 3.1 Power Management ... 8

4.3.2 Command Line .. 8

4.3.3 Networking ... 8

4.4 Root File System .. 8

4.5 Bridging ... 8

Intel® Manycore Platform Software Stack (Intel® MPSS)

vi Document Number: 330077-001US

4.5.1 Internal Bridging .. 9

4.5.2 External Bridging .. 10

4.5.3 Routing ... 11

5 The micctrl.exe Utility ... 12

5.1 Card State Control .. 12

5.1.1 Booting IntelÈ Xeon PhiÊ Coprocessor Cards 12

5.1.2 Resetting IntelÈ Xeon PhiÊ Coprocessor Cards 12

5.1.3 Waiting for IntelÈ Xeon PhiÊ Coprocessor Card State

Change ... 13

5.1.4 IntelÈ Xeon PhiÊ Coprocessor Card Status 13

5.2 Helper Functions for Configuration Parameters 13

5.2.1 Adding Users to the IntelÈ Xeon PhiÊ Coprocessor File

System ... 13

5.2.2 Removing Users from the IntelÈ Xeon PhiÊ Coprocessor

File System ... 13

5.2.3 Specifying the Host Secure Shell Keys 13

5.3 Other File System Helper Functions ... 14

5.3.1 Updating the Compressed CPIO Image 14

6 Adding Software ... 15

6.1 The File System Creation Process ... 15

6.1.1 The dir Filelist Directive ... 15

6.1.2 The file Filelist Directive .. 15

6.1.3 The slink Filelist Directive ... 16

6.1.4 The nod Filelist Directive ... 16

6.1.5 The pipe Filelist Directive .. 16

6.1.6 The sock Filelist Directive ... 17

Introduction

User's Guide (Windows) vii

6.2 Creating the Download Image File ... 17

6.3 Adding Files to the Root File System ... 17

6.3.1 Adding Files by Copying .. 17

7 IntelÈ Xeon PhiÊ Coprocessor Information Tool: Micinfo......................... 18

7.1 Simple Method .. 18

7.2 For Advanced Users .. 18

8 IntelÈ Xeon PhiÊ Coprocessor Platform Status Panel: Micsmc 19

9 IntelÈ Xeon PhiÊ Coprocessor Verification Tool: Miccheck 20

10 IntelÈ Xeon PhiÊ Coprocessor RAS Tool: Micras ... 21

10.1 Simple Method .. 21

10.1.1 Configure Micras Service to Start when Windows* Boots

(optional) ... 21

10.2 For Advanced Users .. 22

11 IntelÈ Xeon PhiÊ Coprocessor Utility: Micnativeloadex 24

12 Host File System Share .. 25

12.1 NFS Share on Windows* Se rver 2008 R2 SP1 25

12.1.1 Add the NFS Server ... 25

12.1.2 Provision a Folder for the NFS Share 26

12.1.3 Specify the NFS Share Permissions .. 28

12.2 NFS Share on Windows* Server 2012 and Windows* Server

2012 R2 ... 29

12.2.1 Add the NFS Server ... 29

12.2.2 Provision a folder for the NFS Share 32

12.2.3 Specify the NFS Share Permissions .. 35

12.2.4 Use PowerShell* Cmdlets to Create NFS Share (optional) 37

12.3 Mount the NFS Share ... 38

13 Interacting with the IntelÈ Xeon PhiÊ Coprocessor 39

13.1 External Tools ... 39

Intel® Manycore Platform Software Stack (Intel® MPSS)

viii Document Number: 330077-001US

13.2 Special User Acco unt ómicuserô .. 39

13.3 Generating Public and Private SSH Keys .. 39

13.3.1 Transferring Files to and from the IntelÈ Xeon PhiÊ

Coproce ssor .. 41

13.4 User Groups ... 42

13.4.1 Deleting Users from MICUSERS Group 43

13.5 Adding Persistent Files to IntelÈ Xeon PhiÊ Coprocessor

Filesystem ... 44

13.6 Running the COI Tutorials (optional) ... 45

13.7 Running the MYO Tutorials (optional) ... 45

13.8 Running the SCIF Tutorials (optional) ... 45

13.9 Running the MicMgmt Tutorials (optiona l) .. 45

13.10 Troubleshooting .. 45

14 Installing IntelÈ Xeon PhiÊ Coprocessor Performance Workloads

(optional) ... 48

14.1 Requirements .. 48

14.2 Distributed Files ... 49

14.3 Micp Python Installation .. 49

14.4 Alternative to Python Installation .. 50

15 Important Considerations ... 51

15.1 Disabling and Enabling the Memory Control Group (cgroup) 51

15.2 Enabling Windows MIC GDB Debugging for Offload Processes ... 52

15.3 Enabling Windows MIC Debugging for MYO Applications 52

15.4 Installing Card Side RPMs .. 53

15.4.1 Copy RPMs to the Card Using P SCP .. 54

List of Figures

Figure 1 Boot process for Intel® MPSS ... 4

Figure 2 Internal Bridge Network. .. 9

Figure 3 External Bridge Network .. 10

Introduction

User's Guide (Windows) 1

1 Introduction
¢ƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ coprocessors are PCIe based add-in cards that run a version of
Linux* tailored for these coprocessors. ¢ƘŜ [ƛƴǳȄϝ h{ ŦƻǊ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
coprocessors, as well as a range of drivers and utilities, are included in the Intel®
Manycore Platform Software Stack (Intel® MPSS). The responsibilities of these drivers
and utilities include:

¶ Placing the Linux* boot image and root file system into coprocessor memory.

¶ Controlling coprocessor booting, shutdown and reset.

¶ Providing an IP (over PCIe) networking connection to each coprocessor.

¶ Directing power management of each coprocessor.

¶ Supporting high speed data transfer to and from the coprocessor.

The PCIe bus is the only communication channel available to tƘŜ LƴǘŜƭ ϯ ·Ŝƻƴ tƘƛϰ
coprocessors. Therefore configuration and provisioning of the OS to be executed on
ŜŀŎƘ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ƛǎ ǇŜǊŦƻǊƳŜŘ ōȅ ǘƘŜ Ƙƻǎǘ ǎȅǎǘŜƳ ƛƴ ǿƘƛŎƘ ǘƘŜ
coprocessor is installed.

The Linux* kernel and file system image for the LƴǘŜƭ ϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊǎ ŀǊŜ
installed into the host file system as part of Intel® MPSS installation. The coprocessor
file system image can be configured through the use of the micctrl.exe utility described
below and/or directly by the host root.

The micx64.sys driver is the component of Intel® MPSS that provides PCIe bus access
and implements the coprocessor boot process. To boot a coprocessor, micx64.sys
injects the Linux* kernel image and a kernel command line into coprocessor memory
and signals it to begin execution. A virtual network driver is installed as micvethx64.sys.
Finally, micx64.sys directs power management of the installed coprocessors and
provides a high speed data transfer over PCIe through its Intel® Symmetric
Communications Interface (SCIF) driver.

Micctrl.exe is a utility through which the user can control (boot, shutdown, reset) each
ƻŦ ǘƘŜ ƛƴǎǘŀƭƭŜŘ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊǎ. Micctrl.exe also offers numerous options
to simplify the process of configuring each coprocessor. Section 5 of this document,
άThe micctrl.exe UtilityέΣ Řescribes the micctrl.exe utility in detail.

Intel® Manycore Platform Software Stack (Intel® MPSS)

2 Document Number: 330077-001US

2 Post Installation Quick Configuration
After the installation of the MSI (consult the readme-windows.pdf file for installation
instructions), the system admiƴƛǎǘǊŀǘƻǊ Ƴǳǎǘ ŎƻƳǇƭŜǘŜ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
coprocessor configuration before starting the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊǎ.

2.1 Step 1: Ensure Admin Access
Users must be added to ǘƘŜ aL/¦{9w{ ƎǊƻǳǇ ƛƴ ƻǊŘŜǊ ǘƻ ƭƻƎ ƛƴǘƻ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
coprocessor (refer to Section 13.4 for steps to create the MICUSERS group and add
users to the filesystem).

¦ǎŜǊ ŀŎŎŜǎǎ ǘƻ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ƴƻŘŜ ƛǎ ǇǊƻǾƛŘŜŘ ǘƘǊƻǳƎƘ ǘƘŜ ǎŜŎǳǊŜ
shell utilities. Ensure the admin user has ssh keys. If no SSH keys exist, generate a set of
SSH keys with an external utility (refer to Section 13.3 for key generation instructions).

2.2 Step 2: Change Configuration
Examine the global.xml and micN.xml files in the C:\Program Files\ Intel\MPSS\
directory. If during installation, the base install directory was changed from the default,
this path will differ. If the default configuration meets the requirements of the system,
continue to Step 3. Otherwise, edit the configuration XML files (refer to Section 4,
άConfigurationέύΦ If the micN.xml files do not exist, generate them by executing the
following command as an Administrator:

user_prompt> micctrl - g

2.3 Step 3: Start the Intel® Xeon PhiÊ

Coprocessors

NOTE: In this document, lines preceded by user_prompt> are used to represent a
Windows* command prompt; text following this string on the same line represents
commands to be executed in a Windows* command window.

The default configuration specifies ǘƘŀǘ ŜŀŎƘ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ƛǎ
booted when the host driver is loaded. ¢Ƙƛǎ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
coprocessors will boot when the host system restarts. To start the Intel® ·Ŝƻƴ tƘƛϰ
coprocessors, execute the following command as an Administrator:

user_prompt> micctrl -- start

Post Installation Quick Configuration

User's Guide (Windows) 3

The call to micctrl ǿƛƭƭ ŜȄƛǘ ǿƘŜƴ ƛǘ ŘŜǘŜǊƳƛƴŜǎ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘǎ
have either booted successfully or failed to boot.

Intel® Manycore Platform Software Stack (Intel® MPSS)

4 Document Number: 330077-001US

3 Intel® MPSS Boot Process
Booting the Linux* kernel on the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ǊŜǉǳƛǊŜǎ ŀ ƴǳƳōŜǊ
of steps. Figure 1 shows the sequence of steps that are performed during the Intel®
MPSS boot process.

micctrl ςstart

Micctrl util ity
creates kernel
command line

MIC driver injects
Linux image into
Xeon Phi memory

MIC driver triggers
boot process on

Xeon Phi

Linux kernel boots
and executes init
script in attached

initial ram disk

If root device is
initial ram disk

If root device is
tmpfs ram disk

Execute /sbin/ init
in initial ram disk

Request and
download tmpfs
image from mpss

service

Execute /sbin/ init
in new root

partition

Inform host that the
Xeon Phi system is

ready for use

Micctrl util ity
instructs MIC
driver to boot

Xeon Phi

MIC driver injects
initial ram disk
into Xeon Phi

memory

Figure 1 Boot process for Intel® MPSS

Intel® MPSS Boot Process

User's Guide (Windows) 5

3.1 Booting the IntelÈ Xeon PhiÊ Coprocessor Card
This section describes the key steps that are performed during the Intel® MPSS boot
process on the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘΦ

3.1.1 Kernel Command Line
On most Intel® based systems, loading and executing the Linux* kernel image is
controlled by the grub boot loader. In the grub configuration file, each possible kernel
definition contains a number of parameters to be passed to Linux* through its kernel
command line. In the Intel® MPSS boot system, this is done by micctrl.exe parsing its
configuration files. The kernel command line is created based on values in the
configuration files and placed in the WMI entry cmdline for the driver to retrieve it.

3.1.2 Instruct the Driver to Boot the IntelÈ Xeon PhiÊ
Coprocessor Card
The micctrl utility requests the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ǘƻ ǎǘŀǊǘ ŜȄŜŎǳǘƛƴƎ ǘƘŜ
Linux* image by executing the BootMIC WMI method. This method is a link into the
MIC driver through WMI.

The method ResetMIC may also be executed and will be discussed later.

When the driver receives the boot request, it first checks to see whether the
coprocessor is in the ready state. If the coprocessor is not ready to boot it will return an
error from WMI and will not attempt to boot the coprocessor. Otherwise it sets the
state of the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ǘƻ booting.

The driver then saves the image file name for later retrieval through the image WMI
entry. It also sets the mode to indicate it is booting a Linux* image

The driver will copy the kernel command line setting request by the micctrl utility, along
with a number of addresses in host memory required by various drivers in the Linux*
image. Lǘ ǘƘŜƴ ŎƻǇƛŜǎ ǘƘŜ ǊŜǉǳŜǎǘŜŘ [ƛƴǳȄϝ ƛƳŀƎŜ ŦƛƭŜ ƛƴǘƻ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
ŎƻǇǊƻŎŜǎǎƻǊΩǎ ƳŜƳƻǊȅΦ

The last step is to write to the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ǊŜƎƛǎǘŜǊ ƛƴǎǘǊǳŎǘƛƴƎ ƛǘ ǘƻ
start executing the injected image.

3.1.3 Linux* Kernel Executes
Executing the Linux* kernel code functions as it does on any Intel® based machine. It
ƛƴƛǘƛŀƭƛȊŜǎ ƘŀǊŘǿŀǊŜΣ ǎǘŀǊǘǎ ƪŜǊƴŜƭ ǎŜǊǾƛŎŜǎΣ ŀƴŘ ǎŜǘǎ ŀƭƭ ǘƘŜ /t¦ǎ ǘƻ ǘƘŜ άƻƴƭƛƴŜέ ǎǘŀǘŜΦ
When the kernel is ready, it initializes its attached initial ram disk image and starts
executing the init script in the image.

As on any Intel® based Linux* system, the initial ram disk contains the loadable modules
required for the real root file system. Many of the arguments passed in the kernel

Intel® Manycore Platform Software Stack (Intel® MPSS)

6 Document Number: 330077-001US

command line are addresses required for the modules to access host memory. The init
script parses the kernel command line for needed information and loads the driver
modules.

The last step is for the init script to check the root= parameter in the kernel command
line for the type of device containing the root file system, and take the appropriate
actions.

3.1.4 Root is the Initial Ram Disk
Setting the root to be the initial ram disk is for debug purposes only. The initial ram disk
contains only a minimal set of tools and utilities.

3.1.5 Root is a Ram Disk Image
If the root is set to be a ram file system, an initial file system is written into the
coprocessor memory.

After the file has been written and the coprocessor booted, the init script creates a
tmpfs (Linux* ram disk file system type) in Intel® ·Ŝƻƴ tƘƛϰ coprocessor card memory
and extracts the compressed file system information into it. This image must contain
everything needed to start a fully functional Linux* system.

The ram disk image is activated as the root device by calling the Linux* switch_root
utility. This special utility instructs the Linux* kernel to remount the root device on the
tmpfs mount directory, release all file system memory references to the old initial ram
disk and start executing the new /sbin/init function.

/sbin/init performs the normal Linux* user level initialization. All the information
required must have already been in the compressed cpio file.

3.1.6 Notify the Host that the IntelÈ Xeon PhiÊ Coprocessor
System is Ready
The last step of any of these initializations is to notify the host that the coprocessor card
is ready for access. It does this by writing to its
/sys/class/micnotify/notify/host_notified entry. This causes an interrupt into the host
ŘǊƛǾŜǊ ǿƘƛŎƘ ǳǇŘŀǘŜǎ ǘƘŜ ŎŀǊŘΩǎ ǎǘŀǘŜ ǘƻ online.

Configuration

User's Guide (Windows) 7

4 Configuration
This section focuǎŜǎ ƻƴ ŎƻƴŦƛƎǳǊƛƴƎ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘǎΣ ƛƴŎƭǳŘƛƴƎ
configuration files, kernel command line parameters, and authentication.

4.1 Configurable Components
On a typical Linux* system, the installation and configuration process is performed as a
series of questions posed by the system and answered by the installer/operator. Since
ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘǎ Řƻ ƴƻǘ ƘŀǾŜ ŀ ŦƛƭŜ ǎȅǎǘŜƳ ƻŦ ǘƘŜƛǊ ƻǿƴΣ ǘƘƛǎ
process is replaced by editing the configuration files and using the micctrl.exe utility.

The configuration parameters have three categories:

1) tŀǊŀƳŜǘŜǊǎ ǘƘŀǘ ŎƻƴǘǊƻƭ ƭƻŀŘƛƴƎ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ [ƛƴǳȄϝ ƪŜǊƴŜƭ
onto the card and initiating the boot process.

2) Parameters to define the root file system to be used on the card.

3) Parameters to configure the host end of the virtual Ethernet connection.

4.2 Configuration Files
This section briefly discusses configuration file formats and use of the Include
parameter to micctrl.exe.

4.2.1 File Location and Format
Configuration is controlled by per card configuration files located in the C:\Program
Files\ Intel\MPSS\ directory. Each card has an associated micN.xml configuration file,
where N is the integer ID of that card (i.e.: mic0.xml, mic1.xml, etc.).

Each of the configuration files contains a list of configuration parameters and their
arguments.

4.3 Configuring Boot Parameters
¢ƘŜ Ƙƻǎǘ ǎȅǎǘŜƳ ōƻƻǘǎ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ōȅ ƛƴƧŜŎǘƛƴƎ ǘƘŜ [ƛƴǳȄϝ
kernel image and kernel command line into coprocessor memory and then instructing
the coprocessor to start. To perform this operation, the host system reads the
configuration files and builds the kernel command line from relevant parameters. By
default, the boot parameters are placed in the per-card micN.xml files, allowing each

Intel® Manycore Platform Software Stack (Intel® MPSS)

8 Document Number: 330077-001US

card to be configured independently of the other cards. If a boot parameter is placed in
the global.xml file then it will apply to all cards unless overridden

4.3.1 Power Management
The PowerManagement parameter specifies the LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ [ƛƴǳȄϝ
power management settings. The system owner can specify different power
management settings by editing these values. The changes takes effect upon executing
either micctrl --start or micctrl -b.

4.3.2 Command Line
The CommandLine parameter controls what options are passed to the Intel® ·Ŝƻƴ tƘƛϰ
coprocessor when an Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ starts.

4.3.3 Networking
The Networking parameters specify various settings such as IPAddress, HostIPAddress,
Subnet, MACAddress, and HostMACAddress. These settings will not take effect until
the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ is restarted.

4.4 Root File System
Every Linux* system needs a root file system with a minimal set of files. Other
nonessential files may be on the root or they may be on secondary mounts. Most
modern Linux* OS releases assume the root file system will be large enough to install
the complete release into. The Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŜƳōŜŘŘŜŘ ŦƛƭŜ ǎȅǎǘŜƳ
currently follows the same rule.

Files on the root fall into three categories: the binaries installed with the system, the
files in the /etc directory, which are used for configuring parameters uniquely to an
individual system, and the set of files for the users of the system.

Intel® MPSS provides a set of configuration parameters that are used in building the
root file system imaƎŜΦ wŜŦŜǊ ǘƻ {ŜŎǘƛƻƴ пΦоΣ άConfiguring Boot Parametersέ ŀƴŘ {ŜŎǘƛƻƴ
сΦмΣ άThe File System Creation Processέ ŦƻǊ Ƴore information.

4.5 Bridging
Windows* provides functionality for creating a software bridge that connects two or
more networks so that they can communicate. Network packets received on any of
these bridged networks are passed unchanged to the bridge.

Configuration

User's Guide (Windows) 9

The bridge is assigned the IP address associated with the system on which it exists.
Network packets arriving on any of the physical interfaces are passed to the bridge. If
the destination for the packet is the IP address assigned to the bridge, it is passed to the
TCP/IP stack on the system. If it is any other destination, the bridge performs the role
of a network switch and passes it to the correct physical interface for retransmit.

Steps to create a network bridge in Windows*:

1) Open Network Connections (Hold <WIN+r> to open Run dialog. Enter ncpa.cpl and
click OK).

2) Hold down CTRL and select each network connection that you want to add to the
bridge.

3) Right-click one of the selected network connections, and then click Bridge
Connections (administrator privileges are required).

4.5.1 Internal Bridging
Internal bridging is a term created to describe a networking topology with Intel® Xeon
tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊs connected through a bridged configuration. The advantage of the
internal bridge over the default static pair network configuration is the ability for the
coprocessors to communicate with each other as well as the host.

Figure 2 Internal Bridge Network.

Figure 2 illustrates the internal bridged network topology. In this example the host and
the coprocessors can all communicate through the 10.10.10 subnet. The host can
communicate outside through the 12.12.12 subnet but the coprocessors cannot. The
configuration required to create this topology would be:

mic0.xml
 <IPAddress>10.10.10.1</IPAddress>
 <HostIPAddress>10.10.10.254</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

Intel® Manycore Platform Software Stack (Intel® MPSS)

10 Document Number: 330077-001US

mic1.xml
 <IPAddress>10.10.10.2</IPAddress>
 <HostIPAddress>10.10.10.254</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

4.5.2 External Bridging
External bridging is a term used in the Intel® MPSS software to describe a network
topology where the virtual network interfaces are bridged to a physical network
interface. This is the desired configuration in clusters.

The current release of Intel® MPSS for Windows* supports creating a static external
bridge configuration. A dhcp-based external bridge configuration is planned for a future
release.

Figure 3 External Bridge Network

Figure 3 illustrates the external bridged network topology. In this example, different
cluster nodes and the coprocessors on each cluster node can all communicate with each
other through the 10.10.10 subnet. Normally, the system administrator will configure
the bridge br0 and tie the eth0 interface to it. The configuration required to create this
topology would be:

Cluster Node 0

mic0.xml

Configuration

User's Guide (Windows) 11

 <IPAddress>10.10.10.3</IPAddress>
 <HostIPAddress>10.10.10.2</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

mic1.xml
 <IPAddress>10.10.10.4</IPAddress>
 <HostIPAddress>10.10.10.2</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

Cluster Node 1

mic0.xml
 <IPAddress>10.10.10.6</IPAddress>
 <HostIPAddress>10.10.10.5</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

mic1.xml
 <IPAddress>10.10.10.7</IPAddress>
 <HostIPAddress>10.10.10.5</HostIPAddress>
 <Subnet>255.255.255.0</Subnet>

Currently, the micctrl utility does not support setting up the default gateway in the
LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ coprocessor for external bridge configuration, so it is necessary to
manually change it using the following command.

¶ For all cards on Cluster Node 0:

 user_prompt> route add default gw 10.10.10.2

¶ For all cards on Cluster Node 1:

 user_prompt> route add default gw 10.10.10.5

4.5.3 Routing
Windows* provides functionality to route network traffic between two or more
networks. IP routing is disabled by default in Windows*.

Steps to enable routing in windows:

1) Go to Run; type "cmd" (without quotes).

2) Enter the following commands:

 user_prompt> sc config RemoteAc cess start= auto

 user_prompt > sc start RemoteAccess

There is no change needed in the configuration files for each coprocessor in order to
support this. Since micctrl utility currently does not support setting up the default
gateway in the Intel® Xeon tƘƛϰ coprocessor, it is necessary to manually change it using
the following command:

 user_prompt> route add default gw HOST_IP

Intel® Manycore Platform Software Stack (Intel® MPSS)

12 Document Number: 330077-001US

5 The micctrl.exe Utility
The micctrl.exe utility is a multi-purpose toolbox for the system administrator. It
provides these categories of functionality.

¶ Card state control ς boot and reset control.

¶ Configuration file initialization and propagation of values.

¶ Helper functions for modifying configuration parameters.

The micctrl.exe utility requires a first argument specifying the action to perform,
followed by option-specific arguments. The arguments may be followed by a list of
LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ card names, which is shown in the syntax statements as
[mic card list]. The card list will be a list of the card names. For example, the list may be
άƳƛŎм ƳƛŎоέΣ ƛŦ ǘƘŜǎŜ ŀǊŜ ǘƘŜ ŎŀǊŘǎ ǘƻ ŎƻƴǘǊƻƭΦ

5.1 Card State Control
The micctrl.exe utility provides mechanisms for individual card control. Micctrl.exe
controls Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ǎǘŀǘŜ ŀƴŘ ǉǳŜǊies card state via the
BootMIC WMI method. The micname value is literally the name of the mic card and will
be in the format mic0, mic1, etc.

Changing the state requires full administrative rights.

5.1.1 Booting IntelÈ Xeon PhiÊ Coprocessor Cards
Command syntax:

 micctrl - b [mic card list]

The Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘόǎύ Ƴǳǎǘ ōŜ ƛƴ ǘƘŜ άǊŜŀŘȅέ ǎǘŀǘŜΦ ¢ƘŜ ŘǊƛǾŜǊ ǿƛƭƭ
inject the indicated Linux* image into the cards memory and start it booting.

5.1.2 Resetting IntelÈ Xeon PhiÊ Coprocessor Cards
Command syntax:

 micctrl - r [mic card list]

The Intel® ·Ŝƻƴ tƘƛϰ coprocessor card can be reset in any state. This command uses
the ResetMIC WMI method. The driver will perform a soft reset on the card by setting
the correct card PCI mapped register.

NOTE: Performing a reset may result in the loss of file data that has not been flushed to a
remote file.

The micctrl.exe Utility

User's Guide (Windows) 13

5.1.3 Waiting for IntelÈ Xeon PhiÊ Coprocessor Card State
Change
Command syntax:

 micctrl - w [mic card list]

The wait option waits for the status of the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎessor card to be
ŜƛǘƘŜǊ άƻƴƭƛƴŜέ ƻǊ άǊŜŀŘȅέΦ Lǘ ŀƭǎƻ ŀƭƭƻǿǎ ŦƻǊ ŀ ōǊƛŜŦ ǇŀǳǎŜ ǘƻ ǘƘŜ άǊŜŀŘȅέ ǎǘŀǘŜ ŘǳǊƛƴƎ
mpss startup. It is intended for users to verify the mpss startup, shutdown, or reset
procedure is complete. It has a built-in timeout value of 300 seconds.

5.1.4 IntelÈ Xeon PhiÊ Coprocessor Card Status
Command syntax:

 micctrl - s [mic card list]

The status option displays the status of the Intel® ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘǎ ƛƴ ǘƘŜ
system.

5.2 Helper Functions for Configuration

Parameters
This section discusses command options for adding and removing users and groups.

5.2.1 Adding Users to the IntelÈ Xeon PhiÊ Coprocessor File
System
!ŘŘƛƴƎ ŀ ǳǎŜǊ ǘƻ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ ŦƛƭŜ ǎȅǎǘŜƳ ƛǎ ŀŎŎƻƳǇƭƛǎƘŜŘ ǘƘǊƻǳƎƘ
the addition of a user to the MICUSERS user group. See Section 13.4 for detailed
instructions on creating this group and adding users to the filesystem.

5.2.2 Removing Users from the IntelÈ Xeon PhiÊ Coprocessor
File System
Removing a user from tƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ ŦƛƭŜ ǎȅǎǘŜƳ ƛǎ ŀŎŎƻƳǇƭƛǎƘŜŘ
through the deletion of a user from the MICUSERS user group. See Section 13.4.1 for
detailed instructions on using this group to remove users from the filesystem.

5.2.3 Specifying the Host Secure Shell Keys
Command syntax:

 micctrl - - addssh <user> - f <path to public key file>

Intel® Manycore Platform Software Stack (Intel® MPSS)

14 Document Number: 330077-001US

micctrl -- addssh <username> < public - key >

The --addssh option adds the specified public key to the authorized_keys file in the
coprocessor filesystem. The user must belong to the MICUSERS group for this to be
effective on next boot. This command must be executed from a command prompt with
full administrator privileges.

The public key file format can be OpenSSH public key format, PuTTY public key format,
or PuTTY private key format (usually saved with a file extension .ppk).

Without specifying the -f option, the contents of an OpenSSH public key can be pasted
onto the command line directly and will be added directly to the ǳǎŜǊΩǎ authorized_keys
file.

The secure shell keys will not be updated until the coprocessor is rebooted using
micctrl. It is not sufficient to power cycle the host machine.

5.3 Other File System Helper Functions

5.3.1 Updating the Compressed CPIO Image
Command syntax:

 micctrl - g [mic card list]

The -g option updates the image from the parameters specified in configuration files
and file lists. The new image will be used the next time the card boots.

Adding Software

User's Guide (Windows) 15

6 Adding Software
Typical installations are not static, and usually require the system administrator to add
ŀŘŘƛǘƛƻƴŀƭ ŦƛƭŜǎ ƻǊ ŘƛǊŜŎǘƻǊƛŜǎ ǘƻ ǘƘŜ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ Ǌƻƻǘ ŦƛƭŜ ǎȅǎǘŜƳ ǘƘŀǘ ƛǎ
downloaded to the card.

6.1 The File System Creation Process
In this section we describe the process of building a root file system.

The base component of a root filesystem is a filelist. These can be found in the
installation directory under the filesystem subdirectory. There is one filelist for each
coprocessor as well as a common filelist shared between all coprocessors.

Files can be added to the root file system by editing an existing filelist (for example,
mic0.filelist) and adding the appropriate directives to the filelist.

There are six filelist directive types:

dir <name> <perms> <uid> <gid>

file <name> <source> <perms> <uid> <gid>

slink <name> <to> <perms> <uid> <gid>

nod <name> <perms> <uid> <gid> <t ype> <major> <minor>

pipe <name> <perms> <uid> <gid>

sock <name> <perms> <uid> <gid>

Each directive type is specific to one of six types of files available on a Linux* file system.

6.1.1 The dir Filelist Directive
The dir directive specifies a directory with name is to be created in the card file system.
The perms, uid, and gid ŀǊƎǳƳŜƴǘǎ ǎǇŜŎƛŦȅ ǘƘŜ ŦƛƭŜΩǎ ǇŜǊƳƛǎǎƛƻƴǎΣ ǳǎŜǊ L5, and group ID,
respectively. A typical entry is:

dir /tmp 0777 0 0

The example defines the directory /tmp to be owned by user root and group root, and
with global permissions for everybody.

6.1.2 The file Filelist Directive
The file directive specifies the file with name is to be created in the card file system
image. The perms, uid, and gid ŀǊƎǳƳŜƴǘǎ ǎǇŜŎƛŦȅ ǘƘŜ ŦƛƭŜΩǎ ǇŜǊƳƛǎǎƛƻƴǎΣ ǳǎŜǊ L5, and
group ID, respectively.

Intel® Manycore Platform Software Stack (Intel® MPSS)

16 Document Number: 330077-001US

The source argument to file is relative to the location of the filelist itself.

 For example, the following filelist directive in C:\Program
Files\ Intel\MPSS\ filesystem\mic0.filelist:

file /etc/passwd etc/passwd 644 0 0

The file /etc/passwd will be added to the card file image and populated with the
contents of the file C:\Program Files\ Intel\MPSS\filesystem\mic0\etc\passwd. It will be
owned by user root and group root, and with global read permission and root
modification permission.

6.1.3 The slink Filelist Directive
The slink directive specifies that a symbolic link with name is to be created in the card
file system image, and linked to source. The perms, uid, and gid arguments specify the
ǎȅƳōƻƭƛŎ ƭƛƴƪΩǎ ǇŜǊƳƛǎǎƛƻƴǎΣ ǳǎŜǊ L5, and group ID, respectively.

A typical use of symbolic links is found in the Linux* startup scripts. The filelist
associated with the configuration parameter includes the following:

 slink /etc/rc3.d/S80sshd ../init.d/sshd 0755 0 0

 This directs the creation of a symbolic link on the cards file system accessing the
/etc/init.d/sshd file when /etc/rc.d/S80sshd is accessed.

6.1.4 The nod Filelist Directive
The nod directive specifies that a device node with name and of type is to be created in
the card file system image. type Ƴǳǎǘ ōŜ ŜƛǘƘŜǊ ǘƘŜ ŎƘŀǊŀŎǘŜǊ ΨōΩ ŦƻǊ ōƭƻŎƪ ŘŜǾƛŎŜ ƻǊ ΨŎΩ
for character device. The arguments major and minor must be integer values defining
the correct values of the node. The perms, uid, and gid arguments specify the device
ƴƻŘŜΩǎ ǇŜǊƳƛǎǎƛƻƴǎΣ ǳǎer ID, and group ID, respectively.

Most device nodes are created dynamically by a device driver. However, some legacy
devices still require a hard coded entry. For example, the filelist for BaseDir includes the
following entry, which specifies the creation of a device node for the console:

 nod /dev/console 0600 0 0 c 5 1

6.1.5 The pipe Filelist Directive
The pipe directive specifies that a named pipe device file with name is to be created in
the card file system image. The perms, uid, and gid arguments specify ǘƘŜ ǇƛǇŜΩǎ
permissions, user ID, and group ID, respectively.

Adding Software

User's Guide (Windows) 17

6.1.6 The sock Filelist Directive
The sock directive specifies that a socket device file with name is to be created in the
card file system image. The perms, uid, and gid ŀǊƎǳƳŜƴǘǎ ǎǇŜŎƛŦȅ ǘƘŜ ǎƻŎƪŜǘΩs
permissions, user ID, and group ID, respectively.

6.2 Creating the Download Image File
The download image file is created by processing the filelist for common and then the
filelist for a coprocessor, in that order.

When the filelists are completely processed, micctrl -g will create a cpio entry for the
file and append it to the file micN.image, where N is the numeral indicator for that
device.

6.3 Adding Files to the Root File System
Adding a file to the root file system can be done by adding an entry to some existing
filelist, indicating the location of the file.

6.3.1 Adding Files by Copying
When adding a file to an existing filelist, the first decision is whether the file should be
accessible by all the cards or only a particular one. If it is required for all cards to have
access, then copy the file to a location under the directory common\ and amend its
filelist. Otherwise, copy the file to the directory mic0\ for coprocessor 0, mic1\ for
coprocessor 1, etc. Then update the corresponding filelist.

If a directory had to be created for the added file, do not forget to insert the
appropriate dir entry prior to the new file entry.

Intel® Manycore Platform Software Stack (Intel® MPSS)

18 Document Number: 330077-001US

7 IntelÈ Xeon PhiÊ Coprocessor

Information Tool: Micinfo
The Micinfo command displays information about the LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ
cards installed on the system along with relevant details about the host system, micro-
OS and the drivers. The default installation location for the micinfo.exe tool is the
C:\Program Files\ Intel\MPSS\bin directory.

7.1 Simple Method
The following is the simplest way to execute Micinfo:

user_prompt> mici nfo

7.2 For Advanced Users
Command syntax:

user_prompt> m icinfo [OPTIONS]

OPTIONS:

 - help : Display command help.

 - listDevices : List all IƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ devices detected.

- device Info <deviceNum> [- group <groupname>] : Displays
information about the user-specified LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ card
(determined by <deviceNum>). User may additionally specify the type of
information with -group <groupname> option.

Valid values for <groupname> are:

¶ Versions : Show Flash and uOS versions.

¶ Board Υ {Ƙƻǿ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘ ǊŜƭŀǘŜŘ ƛƴŦƻǊƳŀǘƛƻƴΦ

¶ Core : Show number of cores, voltage and frequency.

¶ Thermal : Show fan and thermal related data.

¶ GDDR : Show device memory related information.

- version : Display the tool version.

LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇrocessor Platform Status Panel: Micsmc

User's Guide (Windows) 19

8 IntelÈ Xeon PhiÊ Coprocessor Platform

Status Panel: Micsmc
Micsmc is the LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ tƭŀǘŦƻǊƳ Status Panel. The micsmc tool can
function in two modes: graphical user interface (GUI) mode and command-line interface
(CLI) mode. GUI mode provides real-ǘƛƳŜ ƳƻƴƛǘƻǊƛƴƎ ƻŦ ŀƭƭ ŘŜǘŜŎǘŜŘ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ
coprocessors installed in the system. The CLI mode produces a snap-shot view of the
status, which allows CLI mode to be used in cluster scripting applications. The micsmc
tool monitors core utilization, temperature, memory usage, power usage statistics, and
error logs, among other features. The default installation location is C:\Program
Files\ Intel\MPSS\bin.

The micsmc tool is based on the work of the Qwt project (http://qwt.sf.net).

The Status Panel User Guide is available in all supported languages, in PDF and HTML
formats, at: C:\Program Files\ Intel\MPSS\docs\sysmgmt.

Intel® Manycore Platform Software Stack (Intel® MPSS)

20 Document Number: 330077-001US

9 IntelÈ Xeon PhiÊ Coprocessor

Verification Tool: Miccheck
The miccheck utility is used to verify the configuration and current status of the Intel®
·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ǎƻŦǘǿŀǊŜ ǎǘŀŎƪΦ Lǘ ǇŜǊŦƻǊƳǎ ǎŀƴƛǘȅ ŎƘŜŎƪǎ ƻƴ ŀ Ƙƻǎǘ ǎȅǎǘŜƳ ǿƛǘƘ
LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊόǎύ ƛƴǎǘŀƭƭŜŘΣ ōȅ ǊǳƴƴƛƴƎ ŀ ǎǳƛǘŜ ƻŦ ŘƛŀƎƴƻǎǘƛŎ ǘŜǎǘǎΦ ¢ƘŜ
default behavior is to run all enabled tests on the host system first, and then on each
LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ƛƴ ǘǳǊƴΦ

For detailed information about miccheck, refer to the help option of the program:

user_prompt> miccheck -- help

LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ w!{ ¢ƻƻƭΥ aƛŎǊŀǎ

User's Guide (Windows) 21

10 IntelÈ Xeon PhiÊ Coprocessor RAS

Tool: Micras
Micras is the application running on the Host system to collect and log RAS events
ƎŜƴŜǊŀǘŜŘ ōȅ LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ ŎƻǇǊƻŎŜǎǎƻǊ ŎŀǊŘǎΦ ¢Ƙƛǎ ǘƻƻƭ ƛǎ ŀƭǎƻ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ
handling test and repair by kicking the card into Maintenance mode upon the detection
of an uncorrectable or fatal RAS event. It runs as a Windows* service. The default
installation location is C:\Program Files\ Intel\MPSS\bin.

Micras logs messages into file micras.log located under C:\Program
Files\ Intel\MPSS\bin. The log messages include but are not limited to:

¶ MCA events including both correctable and uncorrectable events.

¶ Card reset, Maintenance mode test or repair messages.

¶ RAS daemon software operation messages.

An example of the RAS log entry appears below:

Tue Mar 5 16:2 4:29 2013 MICRAS ERROR : Card 2: failed getting card mode

Timestamp Severity Level Message Body

10.1 Simple Method
Micras is installed as a Windows* service.

The following is the simplest way to start micras service:

user_prompt> micctrl -- start

user_prompt> net start micras

To stop micras service, execute the following command:

 user_prompt> net stop micras

10.1.1 Configure Micras Service to Start when Windows* Boots
(optional)
To configure the micras service (RAS) to start when the Windows* OS boots , do the
following:

1) In a command window, type services.msc, and press Enter.

2) In Services, right-click Intel(R) Xeon Phi(TM) Coprocessor Reliable Availability
Service, and click Properties.

3) On the General tab, in Startup type, select Automatic, and click OK.

Intel® Manycore Platform Software Stack (Intel® MPSS)

22 Document Number: 330077-001US

10.2 For Advanced Users
The micras tool can be used in these various ways. See the detailed usage below:

Command syntax:

user_prompt> micras [OPTIONS]

OPTIONS:

- help : Display command help information.

¶ - daemon : run micras in daemon mode. This option is the same as running micras
as a service. Micras will run in the background and handle/log errors silently. In
daemon mode, micras logs messages in micras.log located under

¶ C:\Program Files\ Intel\MPSS\bin.

¶ - loglevel [loggingLevel] : set the level of detail that gets logged with the
micras tool. The accepted levels are from 1 to 15. It is a 4-bit representation, where
bits 0 - 3 mean the following:

o Bit 0 ς Enables Informational Messages
o Bit 1 ς Enables Warning Messages
o Bit 2 ς Enables Error Messages
o Bit 3 ς Enables Critical Messages

to the console prompt. The severity level of micras log messages is mostly aligned with
the standard RFC 5424 syslog severity level. Currently, there are four severity levels
available (see Table 1).

Use Ctrl-C to exit micras and return to a user prompt.

Table 1 Severity Levels

Severity Description General Description Action

INFO Informational

messages

Normal operational messages,

for information purposes (such

as reporting).

No action required.

WARNING Warning

conditions

Warning messages. Not an

error, but an indication that an

error might occur if action is not

taken.

No immediate

action required.

ERROR Error conditions Non-urgent failures. The failure

might be recovered by software

itself.

Advise developers

or administrators.

LƴǘŜƭϯ ·Ŝƻƴ tƘƛϰ /ƻǇǊƻŎŜǎǎƻǊ w!{ ¢ƻƻƭΥ aƛŎǊŀǎ

User's Guide (Windows) 23

CRITICAL Critical

conditions

Critical conditions that should

be corrected immediately.

Micras software has some test

and repair capability built-in. But

some critical condition will

ǊŜǉǳƛǊŜ ŀŘƳƛƴΩǎ ƛƴǾƻƭǾŜƳŜƴǘ ƭƛƪŜ

remove/replace components.

Immediate action

required for some

error conditions

Intel® Manycore Platform Software Stack (Intel® MPSS)

24 Document Number: 330077-001US

11 IntelÈ Xeon PhiÊ Coprocessor Utility:

Micnativeloadex
The micnativeloadex utility will copy an Intel® Xeon Phiϰ coprocessor native binary to a
specified Intel® Xeon Phiϰ coprocessor and execute it. The utility automatically checks
library dependencies for the application and if they can be found in the default search
path (set using the SINK_LD_LIBRARY_PATH environment variable), the libraries will also
be copied to the device prior to execution. This simplifies running Intel® Xeon Phiϰ
coprocessor native applications since the utility automatically copies the required
dependencies.

In addition, the utility can also redirect output from the application running remotely on
the Intel® Xeon Phiϰ coprocessor back to the local console. This feature is enabled by
default, but can be disabled with a command line option. For further details on
command line options, see the help section below.

Note that if the application has any library dependencies, then the
SINK_LD_LIBRARY_PATH environment variable must be set to include those directories.
This environment variable works just like LD_LIBRARY_PATH for normal Linux*
applications. To help determine the required libraries, execute micnativeloadex with the
-l command line option. This will display the list of dependencies and indicate which
ones have been found. Any dependencies not found will likely need to be included in
the SINK_LD_LIBRARY_PATH.

NOTE: For more information about micnativeloadex, refer to:

user_prompt> micn ativeloadex -- help

Host File System Share

User's Guide (Windows) 25

12 Host File System Share

Sections 12.1 and 12.2 demonstrate how to set up an NFS share on Windows* Server.

¶ For Windows* Server 2008 R2 SP1, continue to Section 12.1.

¶ For Windows* Server 2012 and Windows* Server 2012 R2, skip to Section 12.2.

NOTE: NFS server is supported on Windows* Server 2008 R2 SP1, Windows* Server 2012, and
Windows* Server 2012 R2 only. It is NOT supported on Windows* 7 or Windows*
8/8.x.

12.1 NFS Share on Windows* Server 2008 R2 SP1

12.1.1 Add the NFS Server
1) Start Server Manager and navigate to the Roles section. Right-click Roles and

select Add Roles.

2) In the Add Roles Wizard, select the File Services Role:

Intel® Manycore Platform Software Stack (Intel® MPSS)

26 Document Number: 330077-001US

3) Continuing in the wizard, under File Service -> Role Services, select Services for
Network File System.

NOTE: Clear the File Server check box, if necessary.

4) Click Next and then click Install. In the Results pane, confirm that the installation

was successful.

12.1.2 Provision a Folder for the NFS Share
1) In Server Manager, select (highlight) the Share and Storage Management item that

was just added under Roles ->File Services. Click Action -> 9Řƛǘ bC{ /ƻƴŦƛƎǳǊŀǘƛƻƴΧ

2) Select Use Services for NFS to Share Folders and click Provision a Shared Folder
Wizard.

Host File System Share

User's Guide (Windows) 27

3) On the Shared Folder Location page of the wizard, enter a Location value for the
NFS share.

4) For this example, accept the default NTFS permissions.

5) Select the NFS check box and fill in the Share name field.

6) Under Enable unmapped user access, select Allow unmapped user Unix access (by

UID/GID).

Intel® Manycore Platform Software Stack (Intel® MPSS)

28 Document Number: 330077-001US

12.1.3 Specify the NFS Share Permissions
1) In Groups and host permissions, change the Access field for ALL MACHINES group

to No Access. This prevents unspecified hosts from accessing the NFS share. Click
the Add button.

2) Now, specify a host and set its permissions to Read-Write. Select Allow root access.

Click OK to return to the previous dialog box.

3) Verify the Host has Read-Write permissions and Root Access is Allowed. Click Next,

then click Create.

Host File System Share

User's Guide (Windows) 29

4) Close the Provision a Shared Folder Wizard, Services for NFS Configuration Guide
dialog box, and Server Manager.

5) Proceed to Section 12ΦоΣ άMount the NFS ShareέΦ

12.2 NFS Share on Windows* Server 2012 and

Windows* Server 2012 R2

Sections 12.2.1 through 12.2.3 use the Server Manager user interface to set up an NFS
share on Windows* Server 2012 and Windows* Server 2012 R2. For an alternative
method using PowerShell* cmdlets, skip to Section 12ΦнΦпΣ άUse PowerShell* Cmdlets to
Create NFS Share (optional)έΦ

12.2.1 Add the NFS Server
1) Start Server Manager. On the dashboard, click Add Roles and Features on the

Manage menu.

2) In the Add Roles and Features Wizard, click Installation type in the left column.
Select Role-based or feature-based installation.

Intel® Manycore Platform Software Stack (Intel® MPSS)

30 Document Number: 330077-001US

3) Click Server Selection and Select a server from the server pool. Select the server.

4) Click Server Roles. Under Roles, expand File and Storage Services, then expand File
and iSCSI Services. Select Server for NFS.

Host File System Share

User's Guide (Windows) 31

5) A confirmation dialog box will appear. Click the Add Features button.

6) Returning to the Add Roles and Features Wizard, select Confirmation in the left
column. Click the Install button.

Intel® Manycore Platform Software Stack (Intel® MPSS)

32 Document Number: 330077-001US

7) In the Results pane, confirm that the installation was successful.

12.2.2 Provision a folder for the NFS Share
1) In Server Manager, click File and Storage Services in the left column of the

Dashboard.

Host File System Share

User's Guide (Windows) 33

2) Select the desired server from the list. Click Shares in the left column.

3) Click To create a file share, start the New Share Wizard.

4) In the New Share Wizard, click Select Profile and select NFS Share - Quick.

